Appears in the Proceedings of the 19" Design Automation and Test in Europe (DATE), 2016

GraTer: An Approximation Workflow for Exploiting
Data-Level Parallelism in FPGA Acceleration

Atieh Lotfi*, Abbas Rahimi, Amir Yazdanbakhsh*, Hadi Esmaeilzadeh*, Rajesh K. Gupta*

*UC San Diego TUC Berkeley

Abstract—Modern applications including graphics, multime-
dia, web search, and data analytics not only can benefit from
acceleration, but also exhibit significant degrees of tolerance
to imprecise computation. This amenability to approximation
provides an opportunity to trade quality of the results for higher
performance and better resource utilization. Exploiting this
opportunity is particularly important for FPGA accelerators that
are inherently subject to many resource constraints. To better
utilize the FPGA resources, we devise, GRATER, an automated
design workflow for FPGA accelerators that leverages impre-
cise computation to increase data-level parallelism and achieve
higher computational throughput. The core of our workflow is
a source-to-source compiler that takes in an input kernel and
applies a novel optimization technique that selectively reduces
the precision of kernel’s data and operations. By selectively
reducing the precision of the data and operation, the required
area to synthesize the kernels on the FPGA decreases allowing
to integrate a larger number of operations and parallel kernels
in the fixed area of the FPGA. The larger number of integrated
kernels provides more hardware context to better exploit data-
level parallelism in the target applications. To effectively explore
the possible design space of approximate kernels, we exploit
a genetic algorithm to find a subset of safe-to-approximate
operations and data elements and then tune their precision levels
until the desired output quality is achieved. GRATER exploits
a fully software technique and does not require any changes
to the underlying FPGA hardware. We evaluate GRATER on a
diverse set of data-intensive OpenCL benchmarks from the AMD
SDK. The synthesis result on a modern Altera FPGA shows that
our approximation workflow yields 1.4x-3.0x higher throughput
with less than 1% quality loss.

I. INTRODUCTION

Before the effective end of Dennard scaling, we were
able to improve all three of performance, efficiency, and
generality. With the end of Dennard scaling, the community
is facing an iron triangle. We can only improve any two of
the performance, efficiency, and generality at the expense of
the third. Solutions that provide significant performance and
efficiency gains while retaining as much generality as possible,
are highly desirable. One promising approach is the use of
programmable accelerators, such as, FPGAs to achieve higher
performance and efficiency in certain application domains.
Approximate computing is another promising approach that
leverages tolerance of applications to imprecision and trades
small losses of quality for gains in performance and effi-
ciency [11, 12, 14, 19, 20].

The confluence of these two trends can potentially yield
significant performance and efficiency gains since many of
the applications that can benefit from the FPGA accelerations
are amenable to approximation. However, there is a lack
of techniques that exploits this opportunity. This work aims
to bridge the gap between approximation and the FPGA

¥Georgia Institute of Technology

acceleration through an automated design workflow. Altera
and Xilinx recently offer high-level acceleration frameworks
for OpenCL [1, 4], hence in our work we target acceleration
of data-intensive computational OpenCL applications. The
challenge is however devising a workflow that can be plugged
into the existing toolsets and can automatically identify the
opportunities for approximation while keeping the quality loss
reasonably low. This paper addresses this challenge and makes
the following contributions:

(1) We propose GRATER, a design workflow that
automatically leverages approximation to provide more
opportunities for the FPGA accelerators to utilize data-
level parallelism and achieve higher throughput. GRATER
automatically reduces required hardware area for synthesizing
an instance of an OpenCL kernel. This required area is
determined by the precision of data and operations which is
specified by the kernel program. By selectively reducing the
precision, a larger number of parallel approximate kernels
can be mapped in the fixed area budget of an FPGA. GRATER
provides a readily applicable workflow that exploits the
inherent error tolerance of the emerging applications for
higher computational throughput with off-the-shelf FPGAs
without any changes to their hardware structure.

(2) GRATER systematically tunes the precision of the op-
erations and data in the input OpenCL kernel, subject to a
statistical target for quality-of-result. GRATER uses a source-
to-source compiler that leverages an automated transformation
to selectively reduce the precision. The precision of the data
and operations are automatically inferred from the precision
of their operands. We devise a genetic programming-based
optimization algorithm that assigns various precision levels to
different data and operations in the kernel. We use genetic
programming to evolve kernel variants until one is found with
optimal assignments that reduces synthesized kernel area while
stochastically satisfying the quality-of-result target.

(3) We evaluate GRATER with a diverse set of
data-intensive OpenCL benchmarks selected from the
AMD APP SDK v2.9 [2]. The synthesis result on an Altera
Stratix V FPGA shows that the reduced area of the transformed
approximate kernels yields 1.4x—3.0x higher throughput with
less than 1% loss of quality.

The rest of the paper is organized as follows. Section II
surveys prior work in this topic area. Section III describes
acceleration of OpenCL applications on the FPGAs. GRATER
approximation design workflow is presented in Section IV.
In Section V, we present experimental results, followed by
conclusion in Section VI

II. RELATED WORK

SNNAP [14] focuses only on the FPGA acceleration of
neural networks that mimic regions of codes that are amenable
to approximation. Data precision and word-length (i.e., bit
width) optimizations have been used to balance resources and
quality-of-result through introducing custom data types [6, 7,
9, 10, 17, 18]. ASAC [16] identifies approximable variables in
the program using a statistical sampling method for analyzing
the sensitivity of the program output to perturbation in inter-
mediate data. A synthesis method for generating approximate
circuits from RTL code is proposed in [15]. It uses a greedy ap-
proach to generate approximate versions, and selects the near-
optimal design after simulating and synthesizing all design
variants. Circuit techniques also trade area/energy/performance
for quality-of-result through imprecise implementations of
specific hardware blocks such as adder, and multiplier [11, 12].
However, these techniques either target ASIC designs with the
fixed functionality, or utilize custom data types and operations
that are not supported with the state-of-the-art high-level
commercial synthesis tools [1, 4].

In contrast, GRATER does not share the aforementioned
limitations. GRATER focuses on high-level FPGA-specific pre-
synthesis optimization. This optimization reduces the FPGA
resource utilization when the kernel is synthesized. Performing
the optimization in the pre-syntesis step enables GRATER
to efficiently explore the design space of the kernel while
abstracting away the details of the post-synthesis circuit. The
area saving from GRATER allows integrating more kernels
in the fixed-area budget of the FPGA. The resulting bet-
ter utilization of the FPGA resources leads to higher data-
level parallelism and system throughput. GRATER: (1) allows
seamless integration of exact and imprecise data elements
within a software-level kernel to cooperatively work on the
same hardware fabric without requiring any modification to
the structure of the FPGAs; (2) focuses on standard data
types used in OpenCL that are fully supported by the high-
level synthesis tools; (3) takes advantage of the portability of
OpenCL code: kernel quality measurements are accelerated on
the GPUs, and then the selected optimized kernel is mapped on
the FPGAs; (4) deploys a simple model for estimating resource
utilization on FPGA based on the complexity of operations to
avoid synthesizing every possible approximate kernel.

III. OPENCL EXECUTION MODEL

OpenCL is a platform-independent framework for writing
programs that execute across a heterogeneous system consist-
ing of multiple compute devices including CPUs or accelera-
tors such as GPUs, DSPs, and FPGAs. OpenCL uses a subset
of ISO C99 with added extensions for supporting data and
task-based parallel programming models. The programming
model in OpenCL comprises of one or more device kernel
codes in tandem with the host code. The host code typically
runs on a CPU and launches kernels on other compute devices
like the GPUs, DSPs, and/or FPGAs through API calls. The
instance of an OpenCL kernel is called a work-item. These
kernels execute on compute devices that are a set of compute

units (CUs), each comprising of multiple processing elements
having ALUs. The work-items execute on a single processing
element and exercise the ALU. The OpenCL platform model
from the programming model to the framework of the compute
devices is illustrated in Fig. 1.

A. Mapping OpenCL Programs on FPGAs

The Altera OpenCL SDK [1] allows programmers to use
high-level OpenCL kernels, written for GPUs, to generate
an FPGA design with higher performance per Watt [5]. An
OpenCL kernel is first compiled and then synthesized as
a special dedicated hardware for mapping on an FPGA.
However, GPUs and FPGAs exploit data-level parallelism
differently, which leads to disparate benefit in terms of per-
formance per watt. GPUs are single-instruction multiple-data
(SIMD) devices that exploit data-level parallelism: they group
processing elements in a CU to perform the same operation but
on their own individual data. On the other hand, FPGAs exploit
pipeline parallelism in a CU where different stages of the
instructions are applied to different work-items concurrently
leading to a higher performance per Watt.

FPGAs can further improve the performance benefits by
creating multiple copies of the kernel pipelines (synthesized
version of an OpenCL kernel).! For instance, this replication
process can make N copies of the kernel pipeline. As the kernel
pipelines can be executed independently from one another, the
performance would scale linearly with the number of copies
created owing to the data-level parallelism model supported by
OpenCL. In the following sections, we describe how GRATER
can reduce the amount of resources for a kernel pipeline to
save area and exploit remaining area resources to boost perfor-
mance by replication. GRATER systematically reduces the pre-
cision of data and operations in OpenCL kernels to shrink the
resources used per kernel pipeline by transforming complex
kernels to simple kernels that produce approximate results.

IV. GRATER: APPROXIMATION DESIGN WORKFLOW

GRATER supports a source-to-source compiler to gener-
ate approximate kernels via source-to-source OpenCL kernel
transformation. The transformation algorithm automatically
detects and simplifies parts of the kernel code that can be
executed with reduced precision while preserving the desired
quality-of-result. To achieve this goal, GRATER takes in as

Kernel Code
F ‘ Host Code

Work-item [N\

Processing Element

Compute Unit (CU) Compute Device

Fig. 1: OpenCL platform model.

'Replication is handled in Altera
num_compute_units as a kernel attribute.

OpenCL by setting

inputs, an exact OpenCL kernel, a set of input test cases, and
a metric for measuring the quality-of-result target. GRATER
compiler investigates the exact kernel code and detects data
elements, i.e., OpenCL kernel variables, that provide pos-
sible opportunities for increased performance in exchange
of accuracy. GRATER then automatically generates a set of
approximate kernels that produce acceptable results. These
approximate kernels provide improved performance benefits
by reducing the area when implemented on the FPGAs.
GRATER outputs an optimized approximate kernel with the
least area whose output quality satisfies the quality-of-result
target. Fig. 2 illustrates an overview of our workflow.

GRATER uses the precision of the operations and data to
tune performance as a tradeoff against precision. The trans-
formation investigates a set of kernels where in each version,
some of these potential variables are replaced with a less accu-
rate variable?. We assign a precision tag (PT) to each variable
type. For example, a kernel with data types ranging from
floating point to char has four levels of complexity: {4, 3, 2, 1}
are assigned to {float, int, short, char} respectively.
The higher the PT, the higher the accuracy requirements, and
the higher resource consumption. A brute-force methodology
for exploring the approximate kernels is to generate an approx-
imate kernel for every possible combination of the variable
types. For instance, for a kernel with |V| number of float
variables, a total number of 4! kernels would be generated
where in each version every float variable is replaced by
different PTs. This results in an exponentially growing design
space intractable to search. To avoid this huge design space
exploration, we devise an algorithm that first detects those vari-
ables that are amenable to approximation and then applies a
genetic-based algorithm to approximate the kernel. We discuss
the details of our algorithm in the following subsections.

A. Analysis and Pruning
In the first step, GRATER detects variables in the code that
are amenable to approximation. To do so, a separate kernel
is generated for testing the amenability of every variable. In
each kernel, the precision of one variable is demoted by one
level (a APT demoting), while other variables have their exact
precision, to measure the significance of a small precision loss
of a variable on the quality of result. This test determines
whether the precision of the selected variable can be reduced
or not. If the output quality is less than the desired output
quality, GRATER excludes this variable from the set of safe-
to-approximate variables and does not modify its precision.’
Consequently, the variable is eliminated from the candidate
list of variables for approximation. The pruning algorithm
continues the screening process for all the variables in the
code (Line 4-10 in Algorithm 1). The pruning algorithm is
executed |V| times to determine approximable variables (AV).
2We limit the space of our optimization search across the available
variable types in OpenCL, as opposed to within a type itself [17], due to the
nature of a source-to-source transformer that requires to work at the same level
of abstraction of the input programming language. GRATER enables Altera
OpenCL synthesis tool chain to benefit from this source-to-source translation
by generating standard OpenCL approximate kernels.

3GRATER also enables the programmer to annotate critical variables as
non-approximable, so that the transcompiler would not change their precision.

— Exact
Test Quality OpenCL Kernel
it Target
/Source-to-SourceCompiler\

|I|I Population
/ (Modified kernel)
Selection

Mutation/

(@ Crossover
= Gpy
Accelerated Profiling

Final Set of Approximate Kernels

I Area #1)
Approximate

Kernel,

Fitness Evaluation

OpenCL
to —>
FPGA

Fig. 2: Overview of GRATER, our approximation design workflow.

This sensitivity test is done with the help of profiling feedback
that is accelerated on a GPU.

GRATER then finds the lowest possible precision for each
variable in AV (Line 11-14 in Algorithm 1). It generates an
approximate kernel for every variable in AV, where in each
kernel, one variable type is replaced by the lowest possible
precision (e.g. char) while other variables preserve their exact
precision (EP) that originally have in the exact code. If the
quality of the generated kernel is less than the desired output
quality, then that tentative lowest precision is promoted by one
level and the same quality check is repeated. This process is
continued until the lower precision bound for each variable is
found. At this point, PT value ranges for each approximable
variable is extracted (from EP to LP).

After finding the lower precision bound for all variables
in AV, another approximate kernel is generated in which all
approximable variables get their lowest possible precision (LP
values) found in the previous step. If this kernel meets the
quality-of-result target, the solution is found (Line 15-19 in
Algorithm 1). Otherwise, a genetic algorithm, described in the
following, is run to find the approximate kernel.

B. Genetic-based Approximation Algorithm

Genetic algorithm is a powerful stochastic search method
which is deployed to find a good solution from a large
search space [8]. To operate with a genetic algorithm, we
need to take into account the following components: 1) a
genetic representation of solutions in a form that can be
interpreted as a chromosome, 2) an initial population, 3) a
fitness function which gives an evaluation of the desirability
of each chromosome, and 4) genetic operators that change
the composition of new generation during reproduction and a
selection operator for choosing the survivors.

1) Genetic Representation of Chromosomes
We represent each individual as an array of precision tags
with the length of AV list. Each gene in this representation

Algorithm 1 pseudo-code for the GRATER

1: function PRUNE&RELAX(ExactKernel, QualityTarget ,inputSet)
2 V = {All candidate variables in ExactKernel } AV ={}

3 TopPop = {} cInput = inputy from inputSet

4: for all variables v; in Vdo

5: generate kernel; s.t. v; <— APT demoting

6: run kernel; with cInput on GPU

7 if (Quality(kernel;) > QualityTarget) then

8

: AV = AV U v;
9: end if
10: end for
11: for a1l variables v; in AV do
12: LP; = FindLowerPT(v;, cInput)
13: EP; = getExactPT(v;, cInput)
14: end for
15: generate kernel,;, s.t. V v; < LP;
16: run kernel,,;;, with cInput on GPU
17: if (Quality (kernel,;;;) > QualityTarget) then
18: ApproxKernel = kernel,,;,,
19: else
20: ApproxKernel, TopPop =
21: GA(ExactKernel, LP, EP, cInput)
22: end if
23: for all input; in the training inputSet do
24: run ApproxKernel with input; on GPU
25: if (Quality(ApproxKernel) < QualityTarget) then
26: NeedToChangeSolution = True
27: for al1 kernel; in TopPop do
28: run kernel; witfl input; on GPU
29: if (Quality(kernel ;) > QualityTarget) then
30: ApproxKernel = kernel
31: NeedToChangeSolution = False
32: Break
33: end if
34: end for
35: if (NeedToChangeSolution) then
36: cInput = input;
37: Goto line 11
38: end if
39: end if
40: end for
41: return ApproxKernel

42: end function

shows the PT of each variable in AV. Every individual can
be easily translated to a candidate approximate kernel. The
precision of the variables and associated operations in the
approximate kernel is inferred from the assigned PT value
in the chromosome.

2) Population

The initial population is randomly generated. Each approx-
imable variable can have a PT value range with different levels
of complexity, started from its lowest precision bound to its
exact precision level (LP and EP in Algorithm 1).

All individuals in the population should meet the desired
quality-of-result requirement. This can be verified either by
executing the kernel or comparing its PT values with the least
precision chromosome found. The least precision chromosome
found in the population is the one that the PT values of
every gene in its chromosome is lower than the PT values
of corresponding genes in all other chromosomes. If such
a chromosome does not exist in the population, the least
precision PT in the population would be the same as LP. In this
case, for all generated kernels we need a kernel execution for
accuracy check. When the quality measurement test is done by
executing an approximate kernel, its output is compared with
the exact kernel output on a representative data input. If the
output of the approximate kernel cannot satisfy the quality-
of-result target, the approximate kernel is ruled out from the

population. Otherwise, it is considered as one of the candidates
for the next generation. This kernel profiling and execution
process is accelerated on a GPU. This is accomplished by
decoupling the quality loss analysis and the approximate
kernel mapping thanks to the platform-independent nature of
OpenCL. To increase the speed of genetic algorithm, before
creating and executing each approximate kernel, the generated
chromosome is compared to the chromosome with the least
PT in the population so far. If all PT values in the newly
generated chromosome is higher than or equal to the PT values
of the least precision chromosome, this new chromosome
can certainly meet the quality-of-result target; otherwise, the
corresponding kernel should be executed for accuracy check.

3) Fitness Function

Given a kernel, the fitness function returns a value show-
ing the desirability of the approximate kernel. The fitness
value is used by the selection operation to decide which
individuals would survive to the next generation. Our main
objective is to find an approximate kernel that minimizes
the resource utilization on FPGA while meeting the quality-
of-result requirement. To achieve this objective, our fitness
function computes a weighted summation of its assigned PT
values in the chromosome to estimate the area occupancy.
For each variable, the weight is determined by a coefficient
assigned to each precision tag multiplied by the number of
times the variable is used in operations in the kernel. (The
coefficients are determined through simulations which is 0, 1,
2, 6 for PT of 1, 2, 3, 4 respectively.) The higher the precision
and the number of times the variable is used in operations, the
higher weight it gets. With this definition, the lower the fitness
value, the lower area occupancy that configuration has.

4) Selection and Genetic Operators

We use two genetic operators, crossover and mutation, to
produce new chromosomes. Crossover combines the first part
from one parent chromosome to the second part from the
other parent chromosome to produce a child chromosome.
In this implementation, the crossover point is selected
randomly. Mutation operation randomly modifies PT values
of approximable variables in the chromosome. The new PT
value is a random value in the range of LP and EP for the
approximable variable. The newly generated chromosome is
only accepted if it meets the quality-of-result requirement;
otherwise, the operation is applied again.

There are many possible selection algorithms to select
more fit individuals from the new and old population for the
next generation. To rank area occupancy of the approximate
kernels without synthesizing and mapping the kernel on
FPGA, we use the fitness values as an estimate of the area
occupancy. The selected chromosomes are sorted based on
their estimation of area occupancy (fitness value) in each
iteration. The top best individuals are always transferred
for the next generation (elitism selection). For the rest,
individuals are selected based on the proportionate selection
where some of them might change with the crossover and
mutation operations. For the simulation purpose, the crossover
rate, mutation rate, and elitism rate is 0.7, 0.05, and 0.25

respectively. The algorithm runs as long as the user defined
number of iterations has not been passed yet or when the
best fitness values stop growing any further.

Until here, the genetic algorithm finds the final solution
using only one input test case. This solution is verified with
the other input test cases from the training set. If it meets
the quality-of-result requirement for all inputs of this set, this
approximate kernel is the final solution. Otherwise, either the
other top chromosomes in the population is checked or the
genetic algorithm is applied again for the failed input (Line
23-40 in Algorithm 1).

When this procedure is terminated, the best chromosome
with the lowest fitness value is selected and translated to its
corresponding approximate kernel which has the least area
estimation on FPGA. This kernel is passed to the Altera SDK
tool to be synthesized and mapped on the FPGA.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We focus on a diverse set of application domains, including
image processing (recursive gaussian, sobel), signal pro-
cessing (convolution, dct), and physical simulation (n-body).
These benchmarks are selected from the AMD accelerated
parallel processing (APP) SDK v2.9 [2]; that is, a complete
development platform created by the AMD to leverage accel-
erated compute using OpenCL. All of these applications are
error tolerant and have approximable data in their kernels. The
number of variables in these kernels are in the range between
11 and 17.

GRATER source-to-source compiler [3] is implemented in
Python, and accepts the exact kernel, the desired quality
metric, and a set of 100 training input test cases as its
inputs. GRATER utilizes the AMD Evergreen Radeon HD 5870
GPU device for accelerated profiling experiments, and finally
generates an optimized approximate kernel with the minimum
area occupancy estimation and an acceptable output error. The
approximate OpenCL kernels were synthesized for Altera DES
board with a Stratix V FPGA using Altera OpenCL SDK
13.1 tool [1].* Sections V-B and V-C detail how GRATER can
reduce the area and correspondingly increase the throughput
for different apolications.

21
21 ‘ R ;
8l ||:| Approximate [| Exact|
=
g 15 |
o
a 10
o
O
; |_i |_L
-
3]
s 3
=
r-gaussian sobel conv n-body gmean

Fig. 3: Number of mapped kernel pipelines on FPGA.

4 It should be noted that the accelerated profiling process on GPU takes
order of milliseconds to determine if the kernel can meet the quality-of-
result target. While it takes on average more than an hour to synthesize the
approximate OpenCL kernels on Stratix V FPGA.

B. Area Savings with Approximate Kernels

Table I shows the resource utilization for an exact kernel
and the optimized approximate kernel. As shown, the area
utilization is reduced by an average of 14%-25% for different
FPGA resources using the transformed approximate kernel
instead of the exact one. This is achieved by the proper
precision tuning of the kernel variable types that brings area
saving without scarifying the output quality. Fig. 3 compares
the maximum number of mapped kernels on the FPGA board
for the exact kernels and the approximate kernels. For instance,
the exact r-gaussian kernel contains 12 float variables in
which 5 of them are converted to short and one of them to
char. This precision tuning reduces DSP block utilization by
45% and logic utilization by 11%, hence enables mapping 9
approximate kernels rather than 5 exact kernels. Considering
the geometric mean across all the benchmarks, GRATER is able
to map 12 approximate kernels instead of 6 exact kernels in
the fixed area budget of the FPGA. Given a fixed area budget
of the FPGA, GRATER improves the number of mapped kernel
by a factor of 2x on average (maximum 3.3x in n-body).

C. Speedup

As shown in Section V-B, GRATER reduces the synthesized
area for the approximate kernels on the FPGA. Therefore,
the number of parallel kernels (i.e., the kernel pipelines)
that can be fitted into the FPGA is increased resulting in
higher throughput. Fig. 4 shows the corresponding kernel
speedup — throughput of the approximate kernel normalized to
throughput of the exact kernel. As an example, for the n-body
kernel the number of kernel pipelines that can be mapped into
FPGA is increased from 3 for the exact kernel to 10 for the
approximate kernel. Although the maximum clock frequency
for this kernel is changed from 209 MHz for the exact kernel
to 187 MHz for the approximate kernel, the approximate n-
body kernel reaches to 2.98x higher throughput compared
to the exact kernel. As another example, convolution kernel
reaches 1.41x higher throughput. For this kernel, the number
of kernel pipelines (and the maximum clock frequency) is
increased from 15 kernel pipelines (and 191 MHz) for the
exact kernel to 21 kernel pipelines (and 193 MHz) for
the approximate kernel. A geometric mean of 1.82x higher
throughput is achieved across these evaluated benchmarks.
GRATER increases the number of kernel pipelines until one
of the resources reaches its maximum limit. The limiting
factor for each of the kernels are as follow: r-gaussian
(Logic block, 96%), sobel (DSP block, 91.4%), dct (RAM,

2.98x%
3.0x

||j| FPGA W Giau|

2.5x |

2.0x

1.82x

1.37x 1.41x
102>< 103><

15x

1.0x

0.5x

Speedup (Improved Throughput)

0.0x

sobel

r-gaussian

Fig. 4: Speedup with GRATER on FPGA and GPU.

conv n-body gmean

TABLE I: Area utilization for exact (Ext) and approximate (Apx) kernels on StratixV FPGA

| Resource utilization || r-gaussian || sobel I n-body I dct I conv || Avg. Area Reduction |
| [| Ext | Apx || Ext | Apx || Ext | Apx || Ext | Apx || Ext | Apx || |
ALUTs 70668 | 60008 || 72937 | 52213 || 119044 | 58333 || 50530 | 48271 53092 | 48573 21.5%
Registers 110668 | 90825 || 114892 [91218 || 172894 | 95156 || 85707 | 80202 91062 | 80933 20.2%
Logic blocks 27% 24% 29% 23% 43% 25% 22% 21% 23% 21% 17.3%
DSP blocks 16.4% 9% 19% 19% 30% 21% 25% 22% 1.95% | 1.17% 25.4%
Memory bits 791% | 7.09% 3% 3% 8.1% 4% 9.56% | 4.39% 37% | 3.36% 24.8%
M20K blocks 20.23% | 18.4% 18% 18% 25% 17% 22.81% | 17.22% || 15.03% | 14.06% 14.4%

99%), convolution (Logic, 92%), n-body (DSP, 93%). Fig. 4
also summarizes the speedup for executing the approximate
kernels on the GPU, normalized to the exact kernel execution
time. The GPU exhibits a maximum speedup of 18% (with
a geometric mean of 7%) due to its inflexible pipeline that
cannot be fully customized to leverage the precision tuning
for boosting throughput per unit of area.

To evaluate the quality loss, we use PSNR for image
processing applications and average relative error for the other
application domains [13, 16]. We compute the quality loss
of each approximate kernel by comparing against the output
elements from the exact kernel. For simplicity, here we report
the quality loss of all applications by average relative error
metric. We set the quality loss target to a maximum of 0.7%
for image processing applications (which is equivalent to
PSNR of a minimum 30 dB) and 1% for other applications
which is conservatively aligned with other work on quality
trade-offs [11, 12, 14, 20]. We verify the output quality
of the optimized approximate kernel with 100 different test
input patterns, other than the training input set. Fig. 5 shows
the minimum, maximum, and average quality loss for all
the evaluated applications. In all applications, the maximum
quality loss is below the required threshold. Hence, it satisfies
the target quality-of-result.

The execution time of our proposed algorithm is within few
seconds (for sobel and r-gaussian that find the solution with-
out running the genetic algorithm) to few minutes for others.

1.0% ‘ ‘ ‘ ‘

o 08% I |

S

= 06% | |

2z

T 04% |

=}

029 | ooso | 0110% 1

9 . o,
0.09% L_0.003% , 0.016% 0.041% Won T 0.046%
r-gaussian sobel dct conv n-body avg

Fig. 5: Quality loss with GRATER.

VI. CONCLUSION

This work aims to address the following challenge: how
to exploit approximation in order to increase the benefits
of FPGA accelerators without changing the FPGA hardware
structure? Our approach is providing more opportunities for
parallel execution by reducing the precision of kernel’s data
and operations. To this end, we devise GRATER that sys-
tematically transforms an OpenCL kernel to an approximate
version through a genetic algorithm by reducing its area on
the FPGA using the state-of-the-art high-level synthesis tools.
The reduction in area results in better utilization of data-level
parallelism and thereby increased throughput. The results show

that GRATER integrates a larger number of parallel kernels
on the same FPGA fabric that leads to 1.4x-3.0x higher
computational throughput on a modern Altera FPGA with less
than 1% loss of quality. GRATER provides these significant
benefits without applying any modifications to the underlying
FPGA hardware. This feature confirms the efficiency of our
framework in exploiting approximation with current hardware
platforms. FPGA accelerators provide significant gains in
performance and efficiency, yet still require relatively long
design cycles to achieve those gains. Automated workflows,
such as ours, that improve the benefits of FPGA acceleration
are imperative to their widespread applicability.
VII. ACKNOWLEDGMENTS

This work was supported by the NSFs Variability Expe-
dition (1029783), a Qualcomm Innovation Fellowship, NSF
award CCF #1553192, Semiconductor Research Corporation
contract #2014-EP-2577, and a gift from Google.

REFERENCES
[1] Altera SDK for OpenCL. http://altera.com/products/software/opencl/
opencl-index.html.
[2] AMD SDK v209. http://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated- parallel-processing-app-sdk/.

“GRATER Transcompiler,” https://bitbucket.org/act-lab/grater/src.

SDAccel. http://www.xilinx.com/products/design-tools/sdx/sdaccel.html, 2015.
D. Chen, et al. Invited paper: Using OpenCL to evaluate the efficiency of CPUs,
GPUs and FPGAs for information filtering. FPL, 2012.

G. Constantinides, et al. Numerical data representations for FPGA-based scientific
computing. Design Test of Computers, IEEE, 2011.

F. de Dinechin, et al. Designing custom arithmetic data paths with FloPoCo.
Design Test of Computers, IEEE, 2011.

A. Eiben, et al. Introduction to Evolutionary Computing. Natural Computing
Series. Springer, 2007.

A. Gaftar, et al. PowerBit - power aware arithmetic bit-width optimization. FPT,
2006.

N. Herve, et al. Data wordlength optimization for FPGA synthesis.
Processing Systems Design and Implementation, 2005.

A. Rahimi, et al. A variability-aware OpenMP environment for efficient exe-
cution of accuracy-configurable computation on shared-FPU processor clusters.
CODES+ISSS, 2013.

P. Kulkarni et al. Trading accuracy for power with an underdesigned multiplier
architecture. VLSI Design, 2011.

S. Misailovic, et al. Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels. OOPSLA’14, 2014.

T. Moreau, et al. SNNAP: Approximate computing on programmable socs via
neural acceleration. HPCA, 2015.

K. Nepal, et al. ABACUS: A technique for automated behavioral synthesis of
approximate computing circuits. DATE, 2014.

P. Roy, et al. ASAC: Automatic sensitivity analysis for approximate computing.
LCTES ’14, pp 95-104, 2014.

E. Schkufza, et al. Stochastic optimization of floating-point programs with tunable
precision. PLDI ’14, 2014.

W. Sung. et al. Simulation-based word-length optimization method for fixed-point
digital signal processing systems. IEEE Trans. Signal Processing, 1995.

A. Yazdanbakhsh. et al. Axilog: Language Support for Approximate Hardware
Design. DATE, 2015.

A. Yazdanbakhsh. et al. Neural Acceleration for GPU Throughput Processors.
MICRO, 2015.

(3]
[4]
[51
[6]
[71
[8]
[91
[10] Signal

[11]

[12]
[13]
[14]
[15]
[16]
(17]
[18]
[19]

[20]

http://altera.com/products/software/opencl/opencl-index.html
http://altera.com/products/software/opencl/opencl-index.html
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://bitbucket.org/act-lab/grater/src.
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html

