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In our past work we described offloadling an approximable region
of code to a fast and efficient neural processing unit made, naturally,
in silicon. Here we envision a similar system, but instead using the
most powerful neural network of all — a biological neural network as
the accelerator.

1. Introduction

As the historical trend of speed and energy efficiency improvements
diminishes [2], radical departures from conventional approaches are
becoming critical to improving the performance and energy efficiency
of general-purpose processors. Inspired by biological nervous sys-
tems, neuromorphic computing delivers high performance within a
very low power envelope. In fact, human brains can use only 20
Watts to carry out tasks which require a warehouse of processors to
accomplish. Despite these advantages, neuromorphic computers are
not easily programmable in the way that traditional von Neumann
machines are. Furthermore, such models have inherent inaccuracy in
their computation, which must be addressed by the programer. To-
wards reconciling these differences, our past research has focused on
bridging neuromorphic and von Neumann computing models through
intuitive programming models and architectural interfaces, while em-
bracing the notion of approximate execution [3]. Of course, this work
has only used artificial digital or analog neural networks. We seem to
have forgotten the most powerful neural network of all — a biological
neural network! We imagine a future technology in which computa-
tional neuroscience and computer architecture intersect, leading to a
programming environment which offloads approximable regions of
code onto the very brain of its users. In this framework, the biological
nervous tissue becomes an accelerator for a code written in conven-
tional programming languages. We refer to these accelerators as
bio-accelerators, and explore their function, strengths and limitations.

2. Application

Human brains are capable of performing tremendously complicated
tasks while consuming minimal energy. A human can complete a
facial recognition task in only 100 ms, all while processing dozens
of other thoughts and consuming only the energy found in a peanut
butter sandwich. Imagine a wearable device, similar perhaps to
Google Glass, which is capable of offloading spatial, visual, and
audio information storage and processing to the brain of its wearer.
Such a device could consumer far less power, allowing it to run for
days while performing computation tasks far beyond the capabilities
of today’s devices. A camera on the device could feed images di-
rectly to the brain and gain classification for free using preexisting
circuitry designed for the same task. Some type of brain to brain
interface may even be possible, through which information is directly
communicated between individuals.

3. Bio-Acceleration

Computation. Newer generations of neural networks are becoming
increasingly similar to their biological counterparts [5]. Early neural
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networks consisted of neurons which could only send binary signals.
They would send a “one” only when the weighted sum of their inputs
crossed some threshold value. Later networks used a continuous
activation function instead of a step function, branching into the
analog domain. Newer networks use spikes or pulses to encode
information much as a real neuron would. Perhaps if this trend
towards biological realism continues, the task of offloading code
will not seem very daunting. However, there are some important
differences between a biological neural network and the types of
neural networks constructed today. Most obviously, the sheer number
of neurons available in a biological system is far beyond what is
typically used. For example, a perceptron consisting of four layers
and a dozen neurons per layer might be reasonable. In a system with
100 billion neurons, however, part of the challenge may be simply
utilizing all of them. Additionally, each neuron in a biological system
may send signals to as many as 10,000 other neurons [5], making
the task of utilizing such a topology difficult. To further complicate
matters, the neurons themselves may be slower than the ones we
design today. Chemical signals are sent across synapses which are
slower than electrical signals, so a more complicated network may
be necessary to make up for these slow interactions.

Storage. While storage is intuitively commonplace in neural net-
works — after all brains are clearly capable of remembering things
— the exact mechanisms are not completely understood, let alone
controllable. The primary mechanism of learning derives from Heb-
bian theory, which at its core states that “cells which fire together
wire together.” In other words, the connection between neurons
becomes stronger when there is a correlation between activity in
the presynaptic and postsynaptic neurons. This lasting connection
between neurons is called long-term potentiation. In a simplistic
perceptron model, the potentiation of a synapse might be compared
to the “weight” of an artificial neuron. Storage of information in a
brain would, of course, be very different than our current random
access memory model. Instead, information appears to be stored
in an associative manner, perhaps more analogous to a key-value
store. For example, when your visual cortex is presented with the
“key” of a face, you might retrieve the “value” of a name, along with
dozens of other pieces of information about the person. Although
the memory interface would differ from a traditional random access
scheme, today’s programmers may actually feel comfortable in the
new environment. Such a key-value interface is actually analogous
to many database systems in existence already, with the caveat that
any operations done within the brain are inherently approximate.

Programming. We have demonstrated the viability of methods
which allow certain regions of code to be offloaded to a neural pro-
cessing unit without disruptive changes to the traditional program-
ming model [3]. The programmer marks certain regions of code as
“approximable” using a simple keyword. We can then utilize an algo-
rithmic transformation which automatically converts these regions of
code from a traditional von Neumann model to a neural model. We
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Figure 1: The neural transformation: from annotated code to accelerated execution on a bio-accelerator.

envision a system similar to what we have already demonstrated, but
instead of a silicon neural processing unit we envision using biologi-
cal neural networks. Figure 1 demonstrates a possible workflow from
source code to bio-accelerator invocation. We believe the following
criteria are enough to offload computation to a neural network: 1) it
must be approximable, since the transformation is not guaranteed to
exactly mimic the target region, and 2) there must be well defined
inputs and outputs. While the transformation can, in theory, create
code which can run on an arbitrary neural processor, an additional
layer might be necessary when working with a real brain. There
might be limitations to what kind of networks can be programmed,
or there might be limits to how long a living brain can be used for
general purpose computing before there are lasting health effects.
The final requirement is an architectural interface between computer
and brain. While silicon NPUs are tightly coupled with the processor,
here due to the high latency of interfacing with biological nervous
tissue we envision that the bio-accelerator would be of a loosely cou-
pled form. They might be similar to GPUs, where large granularities
of computation are offloaded to the bio-accelerator. Finally, unlike
the code that is offloaded to a silicon NPU, a bio-accelerator could
handle code that is stateful thanks to its storage capabilities.

4. Safety

One of the concerns of using bio-accelerator as a computing substrate
would be the short and long term safety of such an activity. Past
brain-computer interfaces have focused on measuring brain activity
and using this information to control external devices. This proposal,
however, would involve reprogramming groups of neurons for gen-
eral purpose computation. Currently, a technique called transcranial
magnetic stimulation can be used to depolarize neurons in a specific
area of the brain for treatment of certain neurological disorders [6].
Although the effects are under scrutiny, limited use seems to have
mild effects, whereas long term use could cause gradual reprogram-
ming of the synapses. Perhaps there is a balance to be struck. If
interactions with the bio-accelerator for only fractions of a second
do not cause lasting damage, useful work could theoretically still
be performed. Another safety concern would be the invasiveness of
procedures required to install any necessary devices. While a small
outpatient procedure may be allowable, few users would accept a
major surgery. In addition, hardware needs to be general enough to
not require frequent, if any, hardware updates.

5. Feasibility

Today, a large body of research exists concerning electrocorticog-
raphy — a method for recording brain activity using an array of
sensors. With this procedure, brain signals can monitored and trans-
mitted to other devices, allowing basic control of robotics or other

interfaces [1]. However, while observing signals in the brain and
acting upon them is an important step, it is far from the level of tech-
nology which would be required to accomplish what we propose here.
Although using the brain as a computing substrate seems impossible
today, future research may open new doors. For example, the BRAIN
initiative [4] is a proposed collaborative project aiming to map every
neuron of the human brain, much like the human genome project
did for DNA. This project could close an important gap between
our understanding of high level brain function and cell level neuron
function. Perhaps this will lead to breakthroughs which will make
bio-accelerator research possible in the future.

6. Conclusion

Although this idea is wacky and a little strange, we believe that the
technology may one day exist to make a bio-accelerator reality. We
recognize that there would be a long list of ethical concerns about
creating such a device, but we delegate that discussion to the future
society capable of building it.
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