
..

NEURAL ACCELERATION FOR GENERAL-
PURPOSE APPROXIMATE PROGRAMS

..

THIS WORK PROPOSES AN APPROXIMATE ALGORITHMIC TRANSFORMATION AND A NEW

CLASS OF ACCELERATORS, CALLED NEURAL PROCESSING UNITS (NPUS). NPUS LEVERAGE

THE APPROXIMATE ALGORITHMIC TRANSFORMATION THAT CONVERTS REGIONS OF

CODE FROM A VON NEUMANN MODEL TO A NEURAL MODEL. NPUS ACHIEVE AN

AVERAGE 2.3� SPEEDUP AND 3.0� ENERGY SAVINGS FOR GENERAL-PURPOSE

APPROXIMATE PROGRAMS. THIS NEW CLASS OF ACCELERATORS SHOWS THAT

SIGNIFICANT PERFORMANCE AND EFFICIENCY GAINS ARE POSSIBLE WHEN THE

ABSTRACTION OF FULL ACCURACY IS RELAXED IN GENERAL-PURPOSE COMPUTING.

......Energy efficiency is a primary
concern in computer systems. The cessation
of Dennard scaling has limited recent
improvements in transistor speed and energy
efficiency, resulting in slowed general-
purpose processor improvements. Conse-
quently, architectural innovation has become
crucial to achieve performance and efficiency
gains.1

However, a tension exists between effi-
ciency and programmability. Recent work
has quantified three orders of magnitude of
difference in efficiency between general-
purpose processors and application-specific
integrated circuits.2 Since designing ASICs
for the massive base of quickly changing,
general-purpose applications is currently
infeasible, practitioners are increasingly
turning to programmable accelerators
such as GPUs and field-programmable
gate arrays (FPGAs). Programmable accel-
erators provide an intermediate point be-
tween the efficiency of ASICs and the
generality of conventional processors,

gaining significant efficiency for restricted
application domains.

Programmable accelerators exploit some
characteristic of an application domain to
gain efficiency at the cost of generality.
FPGAs, for example, exploit copious, fine-
grained, and irregular parallelism, while
GPUs exploit many threads and SIMD-
style parallelism. Whether an application
can use an accelerator effectively depends
on the degree to which it exhibits the accel-
erator’s required characteristics. Tolerance
to approximation is one such program char-
acteristic that is growing increasingly impor-
tant. Many modern applications—such as
image rendering, signal processing, aug-
mented reality, data analytics, robotics, and
speech recognition—can tolerate inexact
computation in substantial portions of their
execution.3-6 This tolerance can be leveraged
for substantial performance and energy gains.

This article introduces a new class of
programmable accelerators that exploit ap-
proximation for better performance and

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 16

Hadi Esmaeilzadeh

Adrian Sampson

Luis Ceze

University of Washington

Doug Burger

Microsoft Research

..

16 Published by the IEEE Computer Society 0272-1732/13/$31.00 �c 2013 IEEE

energy efficiency. The key idea is to learn
how an original region of approximable
code behaves and to replace the original
code with an efficient computation of the
learned model. This approach contrasts
with previous work on approximate compu-
tation that extends conventional microarchi-
tectures to support selective approximate
execution, incurring instruction bookkeeping
overheads,7-9 or requires vastly different pro-
gramming paradigms.10-11 As with emerging
flexible accelerators,12-14 our technique auto-
matically offloads code segments from pro-
grams written in mainstream languages; but
unlike prior work, it leverages changes in
the offloaded code’s semantics.

Many specialized accelerators are limited
to a single class of workloads or require sig-
nificant programmer effort to transform the
workload into a form that the accelerator
can use. The key to our approach is that
the algorithmic transformation converts di-
verse approximable regions of code into a
common representation that can be effi-
ciently executed on an accelerator. This
work shows that using neural networks as
the common representation can lead to sig-
nificant performance and efficiency gains be-
cause neural networks consist of simple,
regular, parallel operations. Unlike the
CPU, a neural processing unit takes advan-
tage of hard-wired control and avoids the
overhead of fetching and decoding instruc-
tions. This work’s main contribution is the
automatic transformation from code regions
to a common neural-network representation.
This transformation structurally and seman-
tically changes the code and replaces various
unstructured regions of code with structured
fine-grained parallel computation that is the
neural network. The transformation is possi-
ble because the abstraction of full accuracy is
relaxed in the computation. The idea of
learning regions of code is another contribu-
tion of this work.

Approximate computing
Relaxing the high tax of providing perfect

accuracy at the device, circuit, architecture,
and programming language levels can
provide significant opportunities to improve
performance and energy efficiency for
the domains in which applications can

tolerate approximation.8-11,15,16 These appli-
cations span embedded systems that operate
on sensory inputs to multimedia, vision,
web search, machine learning, data analytics,
optimization, and more. While conven-
tional techniques—such as dynamic voltage
and frequency scaling—trade performance
for energy, approximate computing trades
error for performance and energy gains.
Four broad categories of applications can
benefit from general-purpose approximate
computing:

� applications with analog inputs, such
as sensory data processing and scene
reconstructions in augmented reality;

� applications with analog output, such
as multimedia;

� applications with multiple acceptable
answers, such as web search and ma-
chine learning; and

� convergent applications, such as data
analytics and optimization.

These diverse classes of applications provide
opportunities for general-purpose approxi-
mate computing on both mobile and server
computing systems.

However, applying approximation with-
out discipline would make it nearly impossi-
ble to construct reliable software and could
lead to catastrophic failures during execution.
For approximate computation to be safe, it
must be confined to the error-tolerant parts
of the program. It must not, for example,
lead to uncontrolled jumps or wild pointers.
This need for a balance between approximate
and traditional execution has led to research
on disciplined approximation approaches. At
the programming-language level, we intro-
duced the EnerJ approximation-aware lan-
guage, which lets programmers safely
distinguish error-tolerant program compo-
nents and protect critical components from
errors.3 At the architecture level, we intro-
duced a variable-precision instruction set ar-
chitecture (ISA) that allows conventional
Von Neumann processors to interleave
approximate and precise operations at a
single-instruction granularity.9 This ISA
allows the compiler to convey what can
be approximated without specifying how,
letting the microarchitecture choose from a

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 17

..

MAY/JUNE 2013 17

range of approximation techniques without
exposing them to software. We also designed
the dual-voltage Truffle microarchitecture,
which implements this variable-precision ISA.

Although simulation results for that archi-
tecture showed energy savings up to 43 per-
cent, the traditional processor design’s
constraints limit the efficiency gains for this
approach. We can only optimize part of
the Von Neumann pipeline with this
approach—the front end, including instruc-
tion decode and control, can’t be approxi-
mated. However, this article introduces an
algorithmic transformation that converts an
approximable code region from a Von Neu-
mann model to a neural model, enabling
much larger performance and efficiency gains.

Overview
The Parrot transformation is an algorith-

mic transformation that converts regions of
imperative code into neural networks. Be-
cause neural networks expose considerable
parallelism and consist of simple operations,
they can be efficiently accelerated using dedi-
cated hardware. Therefore, the Parrot trans-
formation can yield significant performance
and energy improvements. The transforma-
tion uses a training-based approach to pro-
duce a neural network that approximates
the behavior of candidate code. A trans-
formed program runs primarily on the
main core and invokes an auxiliary hardware
structure, the neural processing unit (NPU),
to perform neural evaluation instead of

executing the replaced code. Figure 1 shows
an overview of the Parrot algorithmic trans-
formation, which has three key phases:
programming, in which the programmer
marks code regions to be transformed; com-
pilation, in which the compiler selects and
trains a suitable neural network and replaces
the original code with a neural network invo-
cation; and execution.

For information on work related to the
Parrot transformation and NPU acceleration,
see the ‘‘Research Related to the Parrot Trans-
formation and Neural Acceleration’’ sidebar.

Programming
During development, the programmer

explicitly annotates functions that are amena-
ble to approximate execution and therefore
candidates for the Parrot transformation.
Because tolerance of approximation is a
semantic property, it is the programmer’s re-
sponsibility to select code whose approximate
execution would not compromise the appli-
cation’s overall reliability. This is common
practice in the approximate computing
literature.3,8,9

Specifically, to identify candidate func-
tions, the programmer marks them as
approximable with an annotation (for exam-
ple, using C++11 [[annotation]] syntax) that
satisfies the following requirements:

� Hot code. To benefit from acceleration,
the offloaded code must account for a
large portion of the program’s work.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 18

Imperative

source

code

Annotated

source

codeProgrammer

Input

data

Processor

Training

inputs Trainer

(Topology and

synaptic

weights)

Trained

neural

network

Code

generator

Instrumented

CPU binary

NPU

configuration

Core

NPU

Programming Code observation Training Code generation Execution

Compilation

Figure 1. The Parrot transformation at a glance: from annotated code to accelerated execution on a neural-processing-unit

(NPU) augmented core. The Parrot transformation has three key phases: programming, in which the programmer marks

code regions to be transformed; compilation, in which the compiler selects and trains a suitable neural network and

replaces the original code with a neural network invocation; and execution.

..

18 IEEE MICRO

...

TOP PICKS

� Approximable. Because neural networks
are inherently approximate, the pro-
gram must be able to tolerate impreci-
sion in the target code’s output.
Previous work has shown that pro-
grammers can identify such soft code
in approximate applications.3,8,9

� Well-defined inputs and outputs. To effi-
ciently use a neural network, the code
must have fixed-size, statically identifi-
able inputs and outputs. It must not,
for example, allocate a dynamically
sized array as its output.

After the programmer identifies suitable
functions, the transformation that enables
NPU acceleration is completely automatic.

Compilation
Once the source code is annotated, as

shown in Figure 1, the compiler applies the
Parrot transformation in three steps: code
observation, neural network selection and
training, and binary generation.

In the code observation step, the compiler
observes the behavior of the candidate code
region by logging its inputs and outputs.
This step is similar to profiling. The com-
piler instruments the program with probes
on the inputs and outputs of the candidate
functions. Then, the instrumented program
is run using representative input sets such
as those from a test suite. The probes log
the inputs and outputs of the candidate func-
tions. The logged input-output pairs consti-
tute the training and validation data for the
next step.

The compiler uses the collected input-
output data to configure and train a neural
network that mimics the candidate region.
The compiler must discover the topology
of the neural network as well as its synaptic
weights. It uses the back-propagation algo-
rithm coupled with a topology search to con-
figure and train the neural network.

The final step of the Parrot transformation
is code generation. The compiler first gener-
ates a configuration for the NPU that imple-
ments the trained neural network. Then, the
compiler replaces each call to the original
function with a series of special instructions
that invoke the NPU, sending the inputs
and receiving the computed outputs.

The NPU configuration and invocation is
performed through ISA extensions that are
added to the core.

Execution
During deployment, the transformed pro-

gram begins executing on the main core and
configures the NPU. Throughout execution,
the NPU is invoked to perform a neural net-
work evaluation in lieu of executing the orig-
inal code region. The NPU is integrated as a
tightly coupled accelerator in the processor
pipeline. Invoking the NPU is faster and
more energy efficient than executing the
original code region, so the whole program
is accelerated.

Many NPU implementations are feasible,
from all-software execution to specialized an-
alog circuits. Because the Parrot transforma-
tion’s effectiveness rests on the efficiency of
neural network evaluation, it’s essential that
invoking the NPU be fast and low-power.
Therefore, we describe a high-performance
hardware NPU design based on a digital
neural network ASIC and architecture
support to facilitate low-latency NPU
invocations.

A key insight in this article is that it’s pos-
sible to automatically discover and train neu-
ral networks that effectively approximate
imperative code from diverse application
domains. These diverse applications don’t
belong to the class of modeling and predic-
tion applications that typically use neural
networks. As Figure 2a illustrates, the Parrot
transformation converts diverse regions of
code to a common representation—neural
networks. Using neural networks as a com-
mon representation during compilation
enables a novel use of hardware neural net-
works to accelerate many approximate
applications. As the results from this work
suggest, different applications require dif-
ferent neural topologies. Thus, we design
one reconfigurable digital NPU to acceler-
ate many applications.

Compilation workflow
Once the program has been annotated,

the compilation workflow implements the
Parrot transformation in three steps: observa-
tion, training, and instrumented binary
generation.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 19

..

MAY/JUNE 2013 19

Code observation
In the first phase, the compiler collects

input-output pairs for the target code that re-
flect real program executions. This in-context
observation allows the compiler to train the
neural network on a realistic data set. The
compiler produces an instrumented binary
for the source program that includes probes
on the annotated function’s input and output.
Each time the candidate function executes, the
probes record its inputs and outputs. The pro-
gram is run repeatedly using test inputs. The
output of this phase is a training data set:
each input-output pair represents a sample
for the training algorithm.

The observation phase resembles the profil-
ing runs used in profile-guided compilation.

Specifically, it requires representative test inputs
for the application. The inputs might be part of
an existing test suite or randomly generated. In
many cases, a small number of application test
inputs are sufficient to train a neural network
because the candidate function is executed
many times in a single application run.

Training
The compiler uses the training data to

produce a neural network that replaces the
original function. Various types of artificial
neural networks exist, but we narrow the
search space to multilayer perceptrons
(MLPs) due to their broad applicability.

The compiler uses the back-propagation
algorithm to train the neural network.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 20

...

Research Related to the Parrot Transformation and Neural Acceleration

This work represents a convergence of three main bodies of research:

approximate computing, general-purpose configurable acceleration, and

hardware neural networks. Fundamentally, the Parrot transformation lev-

erages hardware neural networks to create a new class of configurable

accelerators for approximate programs.

Approximate computing
Many categories of soft application are tolerant to imprecision dur-

ing execution. Prior work has explored relaxed hardware semantics and

their impact on these applications, both as extensions to traditional

architectures1-4 and in the form of fully approximate processing

units.5-8 In contrast, NPUs accelerate coarse-grained blocks of code

in larger applications. No special code must be written to take advan-

tage of approximate units of processing; only lightweight annotation is

required.

Some work has also exposed relaxed semantics in programming lan-

guages to give programmers control over software precision.2,9,10 As an

implementation of approximate semantics, the Parrot transformation

dovetails with these programming models.

General-purpose configurable acceleration
The Parrot transformation extends prior work on configurable comput-

ing, synthesis, specialization, and acceleration that focuses on compiling

traditional, imperative code for efficient hardware structures. One re-

search direction seeks to synthesize efficient circuits or configure

FPGAs to accelerate general-purpose code.11,12 Similarly, static special-

ization has shown significant efficiency gains for irregular and legacy

code.13 More recently, researchers have proposed configurable acceler-

ators that let the main CPU offload certain code to a small, efficient

structure.14,15 This work differs in its focus on accelerating approximate

code. NPUs represent an opportunity to go beyond the efficiency gains

that are possible when strict correctness is not required.

Neural networks
Researchers have extensively studied hardware implementations of

neural networks (neural hardware), both digital16 and analog.17 Recent

work has proposed higher-level abstractions for neural-network imple-

mentation.18 Other work has examined fault-tolerant hardware neural

networks.19 In particular, Temam uses datasets from the UCI machine

learning repository to explore a hardware neural network design’s

fault tolerance.20 That work suggests that even faulty hardware can

be used for efficient simulation of neural networks. The Parrot algorith-

mic transformation provides a compiler workflow that allows general-

purpose approximate applications to exploit this and other hardware neu-

ral networks.

A recent study showed that five of 13 applications from the PARSEC

(Princeton Application Repository for Shared-Memory Computers) suite

can be manually reimplemented to use various kinds of neural networks,

demonstrating that some applications allow higher-level algorithmic

modifications to use hardware neural networks (and potentially an archi-

tecture like NPUs).19 However, that work did not propose an algorithmic

transformation and did not prescribe a programming model or preferred

hardware architecture.

References

1. C. Alvarez et al., ‘‘Fuzzy Memoization for Floating-Point Multi-

media Applications,’’ IEEE Trans. Computers, July 2005,

pp. 922-927.

2. M. de Kruijf, S. Nomura, and K. Sankaralingam, ‘‘Relax: An

Architectural Framework for Software Recovery of Hardware

Faults,’’ Proc. 37th Ann. Int’l Symp. Computer Architecture

(ISCA 10), 2010, pp. 497-508.

3. H. Esmaeilzadeh et al., ‘‘Architecture Support for Disciplined

Approximate Programming,’’ Proc. 17th Int’l Conf. Architectural

..

20 IEEE MICRO

...

TOP PICKS

Back-propagation is a gradient-descent algo-
rithm that iteratively adjusts the neural net-
work’s weights according to each input-
output pair.

Neural network topology selection. In addi-
tion to running back-propagation, this phase
selects a network topology that balances accu-
racy and efficiency. An MLP consists of a fully
connected set of neurons organized into
layers: the input layer, any number of hidden
layers, and the output layer. A larger, more
complex network offers better accuracy poten-
tial but is likely to be slower and less power ef-
ficient than a small, simple neural network.
The objective is to find the smallest neural
network that achieves acceptable accuracy.

To choose the topology, we use a simple
search algorithm guided by the mean
squared error of the neural network when
tested on an unseen subset of the observed
data. The error evaluation uses a typical
cross-validation approach: the compiler
partitions the data collected during obser-
vation into a training set (70 percent of
the observed data) and a test set (the
remaining 30 percent). The topology search
algorithm trains many different neural net-
work topologies using the training set and
chooses the one with the highest accuracy
on the test set and the lowest latency on
the NPU (prioritizing accuracy).

The output from this phase consists of a
neural network topology—specifying the

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 21

Support for Programming Languages and Operating Systems,

ACM, 2012, pp. 301-312.

4. S. Liu et al., ‘‘Flikker: Saving Refresh-Power in Mobile De-

vices Through Critical Data Partitioning,’’ Proc. 16th Int’l

Conf. Architectural Support for Programming Languages

and Operating Systems, ACM, 2011, pp. 213-224.

5. L.N. Chakrapani et al., ‘‘Ultra-Efficient (Embedded) SOC

Architectures Based on Probabilistic CMOS (PCMOS) Tech-

nology,’’ Proc. Conf. Design, Automation and Test in Europe

(DATE 06), European Design and Automation Assn., 2006,

pp. 1110-1115.

6. R. Hegde and N. R. Shanbhag, ‘‘Energy-Efficient Signal Pro-

cessing via Algorithmic Noise-Tolerance,’’ Proc. Int’l Symp.

Low Power Electronics and Design (ISLPED 99), ACM,

1999, pp. 30-35.

7. L. Leem et al., ‘‘ERSA: Error Resilient System Architecture

for Probabilistic Applications,’’ Proc. Conf. Design, Automa-

tion and Test in Europe (DATE 10), European Design and

Automation Assn., 2010, pp. 1560-1565.

8. S. Narayanan et al., ‘‘Scalable Stochastic Processors,’’

Proc. Conf. Design, Automation and Test in Europe

(DATE 10), European Design and Automation Assn., 2010,

pp. 335-338.

9. A. Sampson et al., ‘‘EnerJ: Approximate Data Types for Safe

and General Low-Power Computation,’’ Proc. 32nd ACM

SIGPLAN Conf. Programming Language Design and Imple-

mentation (PLDI 11), 2011, pp. 164-174.

10. W. Baek and T.M. Chilimbi, ‘‘Green: A Framework for Sup-

porting Energy-Conscious Programming Using Controlled

Approximation,’’ Proc. ACM SIGPLAN Conf. Programming

Language Design and Implementation (PLDI 10), ACM,

2010, pp. 198-209.

11. A.R. Putnam et al., ‘‘CHiMPS: A High-Level Compilation Flow

for Hybrid CPU-FPGA Architectures,’’ Proc. ACM/SIGDA 16th

Int’l Symp. Field Programmable Gate Arrays (FPGA 08), ACM,

2008, doi:10.1145/1344671.1344720.

12. R. Razdan and M.D. Smith, ‘‘A High-Performance Microarch-

itecture with Hardware-Programmable Functional Units,’’

Proc. 27th Ann. Int’l Symp. Microarchitecture, ACM, 1994,

pp. 172-180.

13. G. Venkatesh et al., ‘‘Conservation Cores: Reducing the

Energy of Mature Computations,’’ Proc. 15th Int’l Conf.

Architectural Support for Programming Languages and Oper-

ating Systems, ACM, 2010, pp. 205-218.

14. V. Govindaraju et al., ‘‘Dynamically Specialized Datapaths for

Energy Efficient Computing,’’ Proc. IEEE 17th Int’l Symp.

High Performance Computer Architecture, IEEE CS, 2011,

pp. 503-514.

15. S. Gupta et al., ‘‘Bundled Execution of Recurring Traces for

Energy-Efficient General Purpose Processing,’’ Proc. 44th

Ann. IEEE/ACM Int’l Symp. Microarchitecture, ACM, 2011,

pp. 12-23.

16. K. Przytula and V.P. Kumar, eds., Parallel Digital Implementa-

tions of Neural Networks, Prentice Hall, 1993.

17. B.E. Boser et al., ‘‘An Analog Neural Network Processor with

Programmable Topology,’’ IEEE J. Solid-State Circuits, Dec.

1991, pp. 2017-2025.

18. A. Hashmi et al., ‘‘A Case for Neuromorphic ISAs,’’ Proc.

16th Int’l Conf. Architectural Support for Programming Lan-

guages and Operating Systems, ACM, 2011, pp. 145-158.

19. T. Chen et al., ‘‘BenchNN: On the Broad Potential Application

Scope of Hardware Neural Network Accelerators,’’ Proc.

IEEE Int’l Symp. Workload Characterization, IEEE CS, 2012,

pp. 36-45.

20. O. Temam, ‘‘A Defect-Tolerant Accelerator for Emerging

High-Performance Applications,’’ Proc. 39th Ann. Int’l

Symp. Computer Architecture (ISCA 12), IEEE CS, 2012,

pp. 356-367.

..

MAY/JUNE 2013 21

number of layers and the number of neurons
in each layer—along with the weight for each
neuron and the normalization range for each
input and output.

Online training. Our system performs ob-
servation and training prior to deploy-
ment; an alternative design could train
the neural network concurrently with in-
vivo operation. Online training could im-
prove accuracy but would result in runtime
overheads. To address these overheads, an
online training system could offload neural

network training and configuration to a re-
mote server. With offsite training, multiple
deployed application instances could cen-
tralize their training to increase input
space coverage.

Code generation
After the training phase, the compiler

generates an instrumented binary that runs
on the core and invokes the NPU instead
of calling the original function. The pro-
gram configures the NPU when it is first
loaded by sending the topology parameters
and synaptic weights to the NPU. The
compiler replaces the calls to the original
function with special instructions that
send the inputs to the NPU and collect
the outputs from it.

Architecture design for NPU acceleration
Because candidate regions for the Parrot

transformation can be fine grained, NPU in-
vocation must have low overhead to be ben-
eficial. Ideally, the NPU should integrate
tightly with the processor pipeline. The pro-
cessor ISA must also be extended to allow
programs to configure and invoke the NPU
during execution.

ISA support for NPU acceleration
The NPU is a variable-delay, tightly

coupled accelerator that communicates
with the rest of the core via first-in, first-
out (FIFO) queues. The CPU-NPU inter-
face consists of three queues: one for send-
ing and retrieving the configuration, one
for sending the inputs, and one for retriev-
ing the neural network’s outputs. The ISA
is extended with four instructions to access
the queues. These instructions assume that
the processor is equipped with a single
NPU; if the architecture supports multiple
NPUs or multiple stored configurations
per NPU, the instructions can be parame-
terized with an operand that identifies the
target NPU.

� enq.c %r enqueues the value of the
register r into the configuration
FIFO.

� deq.c %r dequeues a configuration
value from the configuration FIFO to
register r.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 22

(a)

Neural
representation

Code1 Code2 Code3 Code4 Code5 Code6

…
Source
codes

Common
intermediate

representation

Acceleration

+
×

CPU NPU

(b)

CPU NPU

CPU GPU FPGA
Digital

ASIC
FPAA

Analog

ASIC

Figure 2. The Parrot algorithmic transformation converts different regions

of code to a common neural intermediate representation that constitutes

simple and highly parallel operations. Neural networks as a common

representation (with structured, simple, and fine-grained parallel operations)

enable acceleration of diverse applications using a single reconfigurable

NPU. Because different applications require different neural topologies,

the NPU is a reconfigurable accelerator (a). There are many possibilities

for NPU implementation. This article focuses on a precise digital

application-specific integrated circuit (ASIC) design (b).

..

22 IEEE MICRO

...

TOP PICKS

� enq.d %r enqueues the value of the
register r into the input FIFO.

� deq.d %r dequeues the head of the
output FIFO to the register r.

To set up the NPU, the program executes
a series of enq.c instructions to send con-
figuration parameters—the number of inputs
and outputs, network topology, and synaptic
weights—to the NPU. The operating system
uses deq.c instructions to save the NPU
configuration during context switches. To
invoke the NPU, the program executes
enq.d repeatedly to send inputs to the con-
figured neural network. As soon as all of the
inputs of the neural network are enqueued,
the NPU starts computation and puts the
results in its output FIFO. The program exe-
cutes deq.d repeatedly to retrieve the out-
put values.

Neural processing unit
As Figure 2b illustrates, there are many

possibilities for the NPU implementation.
Neural networks have previously been imple-
mented in software on the CPU or GPU, on
FPGAs, in digital ASICs, and even in analog
circuitry or field-programmable analog arrays
(FPAAs). We designed a digital NPU circuit
that operates at the same voltage and fre-
quency as the main core.17 This implementa-
tion represents a reasonable tradeoff between
efficiency and complexity. However, we be-
lieve that analog NPUs have significant po-
tential, and we plan to explore them in
future work.

Evaluation
To evaluate the Parrot transformation’s

effectiveness, we apply it to several bench-
marks from diverse application domains.
For each benchmark, we identify a region
of code that is amenable to the Parrot trans-
formation. We evaluate whole-application
speedup and energy savings using cycle-
accurate simulation and a power model.
We also examine the resulting computation
accuracy tradeoff. We perform a sensitivity
analysis to examine the effect of the NPU
processing-engine (PE) count and communi-
cation latency on the performance benefits.
See our paper for MICRO 2012 for the
details of our evaluation.17

Benchmarks
We used a suite of approximation-

tolerant applications from diverse domains
to evaluate our technique’s broad applicabil-
ity, including

� fft (Radix-2 Cooley-Tukey fast Four-
ier transform),

� inversek2j (inverse kinematics for
two-joint arm),

� jmeint (triangle intersection detection),
� jpeg (image encoding),
� kmeans (clustering), and
� sobel (edge detection).

These benchmarks are all written in C.
The application domains—signal processing,
robotics, gaming, compression, machine
learning, and image processing—are selected
for their usefulness to general applications
and tolerance to imprecision. The domains
are commensurate with evaluations of previ-
ous work on approximate comput-
ing.3,6,7,9,10,15 To assess the effect of the
Parrot transformation perceptually, we
selected a number of benchmarks that gener-
ate image outputs. We didn’t reject any of
the applications on the basis of performance,
energy, or accuracy shortfalls.

Code annotation. We annotated each bench-
mark’s C source code as described earlier by
identifying a single pure function with fixed-
size inputs and outputs. We made no algo-
rithmic changes to the benchmarks to
accommodate the Parrot transformation.
In some cases, we had more than one choice
for the target code selection, and multiple
NPUs might even have been beneficial for
some programs. For the purposes of this
evaluation, however, we selected a single tar-
get region per benchmark that was easy to
identify, frequently executed to allow for ef-
ficiency gains, and amenable to learning by a
neural network. Qualitatively, we found it
straightforward to identify a reasonable can-
didate function in each benchmark.

In most of the benchmarks we examined,
the target code contains complex control
flow, including conditionals, loops, and
method calls. In jmeint, the target code
contains the bulk of the algorithm, including
many nested method calls and numerous

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 23

..

MAY/JUNE 2013 23

conditionals. In jpeg, the transformation
subsumes the discrete cosine transform and
quantization phases, which contain function
calls and loops. In fft, inversek2j,
and sobel, the target code consists mainly
of arithmetic operations and simpler control
flow. In kmeans, the target code is the
Euclidean distance calculation, which is sim-
ple and fine grained yet frequently executed.
In each case, the target code is free of side
effects, and the number of inputs and out-
puts is statically identifiable.

Training data. To train the NPU for each
application, we used either typical program
inputs (for example, sample images) or a lim-
ited number of random inputs. For the
benchmarks that use random inputs, we de-
termined the permissible range of parameters
in the code and generated uniform random
inputs in that range. For the image-based
benchmarks, we used three standard images
that are used to evaluate image-processing
algorithms. For kmeans, we supplied ran-
dom inputs to the code region to avoid over-
training on a particular test image.

Output quality. We used an application-
specific error metric to assess each benchmark’s
output quality. In all cases, we compared the
original untransformed application’s output
to that of the transformed application. For
fft and inversek2j, which generate
numeric outputs, we measured the average
relative error. The benchmark jmeint cal-
culates whether two 3D triangles intersect;
we report the misclassification rate. For
jpeg, kmeans, and sobel, which pro-
duce image outputs, we use the average
root-mean-square image difference.

Application average error rates range from
3 to 10 percent. This quality-of-service loss is
commensurate with other work on quality
tradeoffs.3,9,16,18

Experimental setup
We use cycle-accurate simulation and en-

ergy modeling to evaluate the performance
and energy effects of the Parrot transforma-
tion and NPU acceleration.

Simulation. We use the MARSSx86 cycle-
accurate x86-64 simulator to evaluate the

performance effect of the Parrot transfor-
mation and NPU acceleration.19 We con-
figure the simulator to resemble Intel’s
Penryn microarchitecture, which is an ag-
gressive out-of-order design. We augment
MARSSx86 with a cycle-accurate NPU
simulator and add support for NPU
queue instructions through unused x86
opcodes. We use C assembly inlining to
add the NPU invocation code. We compile
the benchmarks using GCC version 4.4.6
with the �O3 flag to enable aggressive
compiler optimizations. The baseline in
all reported results is the execution of the
entire benchmark on the core without the
Parrot transformation.

Energy modeling. MARSSx86 generates an
event log during the program’s cycle-accurate
simulation. The resulting statistics are sent to
a modified version of McPAT to estimate
each execution’s energy consumption. We
model the energy consumption of an 8-PE
NPU using the results from McPAT and
CACTI 6.5 for memory arrays, buses,
and steering logic. We use the results
from Galal and Horowitz to estimate the en-
ergy of multiply-and-add operations.20 We
model the NPU and the core at the 45-nm
technology node. The NPU operates at the
same frequency and voltage as the main
core. We use the 2,080 MHz frequency
and VDD¼ 0.9 V settings because the energy
results in Galal and Horowitz use this fre-
quency and voltage setting.

Experimental results
Figure 3a shows the application speedup

when an 8-PE NPU replaces each bench-
mark’s target function. The rest of the code
runs on the core. The baseline executes the
entire untransformed benchmark on the
CPU. The plots also show the potential
available speedup, which is the hypothetical
speedup if the NPU takes zero cycles for
computation. Among the benchmarks,
inversek2j sees the highest speedup
(11.1�) because the Parrot transformation
substitutes the bulk of the application
with a relatively small neural network (2 !
8 ! 2). On the other hand, kmeans sees
a 24 percent slowdown even though it
shows a potential speedup of 20 percent in

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 24

..

24 IEEE MICRO

...

TOP PICKS

the limit. The transformed region of code in
kmeans consists of 26 mostly arithmetic
instructions that can efficiently run on the
core while the neural network (6 ! 8 !
4 ! 1) for this benchmark is comparatively
complex and involves more computation
(84 multiply-adds and 12 sigmoids) than
the original code. On average, the bench-
marks see a speedup of 2.3� through NPU
acceleration.

Figure 3b shows each benchmark’s energy
reduction. The baseline is the energy con-
sumed by running the entire benchmark on
the unmodified CPU and the ideal energy
savings for a hypothetical zero-energy
NPU. The Parrot transformation elides the
execution of a significant portion of dynamic
instructions that otherwise would go through
power-hungry stages of the out-of-order
pipeline. The reduction in the number of dy-
namic instructions, together with the NPU’s
energy-efficient design, yields a 3.0� average
application energy reduction.

T raditionally, hardware implementa-
tions of neural networks have been

confined to specific classes of learning
applications. In this article, we show that
the potential exists to use them to accelerate
general-purpose code that can tolerate small
errors by introducing and defining the
Parrot algorithmic transformation. As this
work demonstrates, the Parrot algorithmic
transformation, which structurally and se-
mantically changes the code, can yield
significant gains both in performance and
efficiency. In fact, the transformation was
successful for every approximable code region
that we tested. This acceleration capability
aligns with both transistor and application
trends, as transistors become less reliable and
as imprecise applications grow in importance.
NPUs may thus form a new class of trainable
accelerators with potential implementations
in digital and analog domains. MICR O

Acknowledgments
We thank the anonymous reviewers

for their valuable comments. We also
thank Brandon Lucia, Jacob Nelson,
Ardavan Pedram, Mike Schlansker,
Renée St. Amant, Karin Strauss, Xi Yang,
and the members of the Sampa group

for their feedback on the manuscript.
This work was supported in part by
NSF grant CCF-1016495 and gifts from
Microsoft.

..
References

1. H. Esmaeilzadeh et al., ‘‘Dark Silicon and

the End of Multicore Scaling,’’ Proc. 38th

Ann. Int’l Symp. Computer Architecture

(ISCA 11), ACM, 2011, pp. 365-376.

2. R. Hameed et al., ‘‘Understanding Sources

of Inefficiency in General-Purpose Chips,’’

Proc. 37th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 10), ACM, 2010, pp. 37-47.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 25

(a)

(b)

Core + NPU
Core + Ideal NPU

fft inversek2j jmeint jpeg kmeans sobel geomean
0

1

2

3

4

5

6

7

3.9

2.4

1.4

2.4

5.8

25.2

3.2
3.0

2.2

1.1

2.12.3

21.1

3.1

A
p

p
lic

a
ti
o

n
 e

n
e

rg
y
 r

e
d

u
c

ti
o

n

Core + NPU

Core + Ideal NPU

0

1

2

3

4

5

fft inversek2j jmeint jpeg kmeans sobel geomean

3.4

2.5

1.2

1.9

4.5

15.8

2.3

1.9

0.8

1.61.7

11.1

3.6

A
p

p
lic

a
ti
o

n
 s

p
e

e
d

u
p

3.8

Figure 3. Performance and energy improvements. Total application

speedup with an 8-processing-engine (8-PE) NPU (a). Total application

energy saving with an 8-PE NPU (b).

..

MAY/JUNE 2013 25

3. A. Sampson et al., ‘‘EnerJ: Approximate

Data Types for Safe and General Low-

Power Computation,’’ Proc. 32nd ACM

SIGPLAN Conf. Programming Language

Design and Implementation (PLDI 11),

2011, pp. 164-174.

4. Y. Fang, H. Li, and X. Li, ‘‘A Fault Criticality

Evaluation Framework of Digital Systems

for Error Tolerant Video Applications,’’

Proc. Asian Test Symp. (ATS 11), IEEE CS,

2011, pp. 329-334.

5. M. de Kruijf and K. Sankaralingam,

‘‘Exploring the Synergy of Emerging Work-

loads and Silicon Reliability Trends,’’ Proc.

IEEE 9th Workshop Silicon Errors in

Logic—System Effects, 2009.

6. X. Li and D. Yeung, ‘‘Exploiting Soft Com-

puting for Increased Fault Tolerance,’’

Workshop Architectural Support for Giga-

scale Integration, 2006.

7. C. Alvarez et al., ‘‘Fuzzy Memoization

for Floating-Point Multimedia Applica-

tions,’’ IEEE Trans. Computers, July 2005,

pp. 922-927.

8. M. de Kruijf, S. Nomura, and K. Sankaralin-

gam, ‘‘Relax: An Architectural Framework

for Software Recovery of Hardware Faults,’’

Proc. 37th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 10), 2010, pp. 497-508.

9. H. Esmaeilzadeh et al., ‘‘Architecture Support

for Disciplined Approximate Programming,’’

Proc. 17th Int’l Conf. Architectural Support

for Programming Languages and Operating

Systems, ACM, 2012, pp. 301-312.

10. L. Leem et al., ‘‘ERSA: Error Resilient Sys-

tem Architecture for Probabilistic Applica-

tions,’’ Proc. Conf. Design, Automation and

Test in Europe (DATE 10), European Design

and Automation Assn., 2010, pp. 1560-1565.

11. L.N. Chakrapani et al., ‘‘Ultra-Efficient

(Embedded) SOC Architectures Based on

Probabilistic CMOS (PCMOS) Technology,’’

Proc. Conf. Design, Automation and Test in

Europe (DATE 06), European Design and

Automation Assn., 2006, pp. 1110-1115.

12. S. Gupta et al., ‘‘Bundled Execution of Re-

curring Traces for Energy-Efficient General

Purpose Processing,’’ Proc. 44th Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

ACM, 2011, pp. 12-23.

13. G. Venkatesh et al., ‘‘Conservation Cores:

Reducing the Energy of Mature Computa-

tions,’’ Proc. 15th Int’l Conf. Architectural

Support for Programming Languages and

Operating Systems, ACM, 2010, pp. 205-218.

14. V. Govindaraju et al., ‘‘Dynamically Special-

ized Datapaths for Energy Efficient Comput-

ing,’’ Proc. IEEE 17th Int’l Symp. High

Performance Computer Architecture, IEEE

CS, 2011, pp. 503-514.

15. S. Sidiroglou-Douskos et al., ‘‘Managing

Performance vs. Accuracy Trade-offs with

Loop Perforation,’’ Proc. 13th European

Conf. Foundations of Software Eng., ACM,

2011, pp. 124-134.

16. W. Baek and T.M. Chilimbi, ‘‘Green:

A Framework for Supporting Energy-

Conscious Programming Using Controlled

Approximation,’’ Proc. ACM SIGPLAN

Conf. Programming Language Design and

Implementation (PLDI 10), ACM, 2010,

pp. 198-209.

17. H. Esmaeilzadeh et al., ‘‘Neural Acceleration

for General-Purpose Approximate Programs,’’

Proc. 45th Ann. IEEE/ACM Int’l Symp. Micro-

architecture, IEEE CS, 2012, pp. 449-460.

18. S. Misailovic et al., ‘‘Quality of Service

Profiling,’’ Proc. 32nd ACM/IEEE Int’l Conf.

Software Engineering—Vol. 1 (ICSE 10),

ACM, 2010, pp. 25-34.

19. A. Patel et al., ‘‘MARSSx86: A Full System

Simulator for x86 CPUs,’’ Proc. 48th ACM/

EDAC/IEEE Design Automation Conf., IEEE

CS, 2011, pp. 1050-1055.

20. S. Galal and M. Horowitz, ‘‘Energy-Efficient

Floating-Point Unit Design,’’ IEEE Trans.

Computers, July 2011, pp. 913-922.

Hadi Esmaeilzadeh is a PhD candidate in
the Department of Computer Science and
Engineering at the University of Washing-
ton. His research interests include developing
new technologies and cross-stack solutions to
improve the performance and energy effi-
ciency of computer systems for emerging
applications. Esmaeilzadeh has an MS in
computer science from the University of
Texas at Austin and an MS in electrical and
computer engineering from the University of
Tehran.

Adrian Sampson is a PhD student in the
Department of Computer Science and
Engineering at the University of Washing-
ton, where he works on architecture and
programming languages. His research focuses

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 26

..

26 IEEE MICRO

...

TOP PICKS

on disciplined approximate computing, a set
of techniques that safely trade accuracy for
efficiency. Sampson has an MS in computer
science from the University of Washington.

Luis Ceze is an associate professor in the
Computer Science and Engineering Depart-
ment at the University of Washington. His
research focuses on computer architecture,
programming languages, and operating sys-
tems to improve multiprocessor systems’
programmability, reliability, and energy effi-
ciency. Ceze has a PhD in computer science
from the University of Illinois at Urbana-
Champaign. He is a member of IEEE, the
ACM, and Usenix.

Doug Burger is the director of client and
cloud applications at Microsoft Research,

where he manages strategic research projects
covering new user interfaces, datacenter
specialization, cloud architectures, and plat-
forms that support personalized online
services. Burger has a PhD in computer
science from the University of Wisconsin.
He is a fellow of IEEE and the ACM.

Direct questions and comments about
this article to Hadi Esmaeilzadeh, Com-
puter Science and Engineering, Box
352350, Seattle, WA 98195; hadianeh@
cs.washington.edu.

[3B2-9] mmi2013030016.3d 16/5/013 14:13 Page 27

..

MAY/JUNE 2013 27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

