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Abstract
Starting in 2004, the microprocessor industry has shifted to 
multicore scaling—increasing the number of cores per die 
each generation—as its principal strategy for continuing per-
formance growth. Many in the research community believe 
that this exponential core scaling will continue into the hun-
dreds or thousands of cores per chip, auguring a parallelism 
revolution in hardware or software. However, while transis-
tor count increases continue at traditional Moore’s Law 
rates, the per-transistor speed and energy efficiency improve-
ments have slowed dramatically. Under these conditions, 
more cores are only possible if the cores are slower, simpler, 
or less utilized with each additional technology generation. 
This paper brings together transistor technology, processor 
core, and application models to understand whether mul-
ticore scaling can sustain the historical exponential perfor-
mance growth in this energy-limited era. As the number of 
cores increases, power constraints may prevent powering of 
all cores at their full speed, requiring a fraction of the cores 
to be powered off at all times. According to our models, the 
fraction of these chips that is “dark” may be as much as 50% 
within three process generations. The low utility of this “dark 
silicon” may prevent both scaling to higher core counts and 
ultimately the economic viability of continued silicon scal-
ing. Our results show that core count scaling provides much 
less performance gain than conventional wisdom suggests. 
Under (highly) optimistic scaling assumptions—for parallel 
workloads—multicore scaling provides a 7.9× (23% per year) 
over ten years. Under more conservative (realistic) assump-
tions, multicore scaling provides a total performance gain of 
3.7× (14% per year) over ten years, and obviously less when 
sufficiently parallel workloads are unavailable. Without a 
breakthrough in process technology or microarchitecture, 
other directions are needed to continue the historical rate of 
performance improvement.

1. INTRODUCTION
Moore’s Law18 (the doubling of transistors on chip every 18 
months) has been a fundamental driver of computing. For 
more than four decades, through transistor, circuit, micro-
architecture, architecture, and compiler advances, Moore’s 
Law, coupled with Dennard scaling,9 has resulted in consis-
tent exponential performance increases. Dennard’s scaling 
theory showed how to reduce the dimensions and the elec-
trical characteristics of a transistor proportionally to enable 
successive shrinks that simultaneously improved density, 
speed, and energy efficiency. According to Dennard’s theory 
with a scaling ratio of , the transistor count doubles 
(Moore’s Law), frequency increases by 40%, and the total 

chip power stays the same from one generation of process 
technology to the next on a fixed chip area. With the end of 
Dennard scaling, process technology scaling can sustain 
doubling the transistor count every generation, but with sig-
nificantly less improvement in transistor switching speed 
and energy efficiency. This transistor scaling trend presages 
a divergence between energy efficiency gains and transis-
tor density increases. The recent shift to multicore designs, 
which was partly a response to the end of Dennard scaling, 
aimed to continue proportional performance scaling by 
utilizing the increasing transistor count to integrate more 
cores, which leverage application and/or task parallelism.

Given the transistor scaling trends and challenges, it is 
timely and crucial for the broader computing community 
to examine whether multicore scaling will utilize each gen-
eration’s doubling transistor count effectively to sustain the 
performance improvements we have come to expect from 
technology scaling. Even though power and energy have 
become the primary concern in system design, no one knows 
how severe (or not) the power problem will be for multicore 
scaling, especially given the large multicore design space.

Through comprehensive modeling, this paper provides a 
decade-long performance scaling projection for future mul-
ticore designs. Our multicore modeling takes into account 
transistor scaling trends, processor core design options, chip 
multiprocessor organizations, and benchmark characteris-
tics, while applying area and power constraints at future tech-
nology nodes. The model combines these factors to project 
the upper bound speedup achievable through multicore scal-
ing under current technology scaling trends. The model also 
estimates the effects of nonideal transistor scaling, includ-
ing the percentage of dark silicon—the fraction of the chip 
that needs to be powered off at all times—in future multicore 
chips. Our modeling also discovers the best core organiza-
tion, the best chip-level topology, and the optimal number of 
cores for the workloads studied. We do not believe or advo-
cate that designs with dark silicon are ideal or even desirable; 
in our view smaller chips are more likely. Nonetheless, our 
modeling shows that—even with the best multicore organiza-
tion, assuming constant chip size and fixed power budget—a 
significant portion of the chip will remain dark.

The study shows that regardless of chip organization and 
topology, multicore scaling is power limited to a degree not 
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widely appreciated by the computing community. In just 
five generations, at 8nm, the percentage of dark silicon in 
a fixed-size chip may grow to 50%. Given the recent trend of 
technology scaling, the 8nm technology node is expected to 
be available in 2018. Over this period of ten years (from 2008 
when 45nm microprocessors were available), with optimistic 
international technology roadmap for semiconductors 
(ITRS) scaling projections,16 only 7.9× average speedup is pos-
sible for commonly used parallel workloads,4 leaving a nearly 
24-fold gap from a target of doubled performance per genera-
tion. This gap grows to 28-fold with conservative scaling pro-
jections,5 with which only 3.7× speedup is achievable in the 
same period. Further investigations also show that beyond 
a certain point increasing the core count does not translate 
to meaningful performance gains. These power and parallel-
ism challenges threaten to end the multicore era, defined as 
the era during which core counts grow appreciably.

2. OVERVIEW
Figure 1 shows how we build and combine three models to 
project the performance of future multicores. Ultimately, 
the model predicts the speedup achievable by multicore 
scaling and shows a gap between our model’s projected 
speedup and the expected exponential speedup with each 
technology generation. We refer to this gap as the dark 
silicon performance gap, since it is partly the result of the 
dark silicon phenomenon, or the nonideal transistor scal-
ing that prevents fully utilizing the exponential increases 
in transistor count. Our modeling considers transistor 
scaling projections, single-core design scaling, multicore 
design choices, application characteristics, and microar-
chitectural features. This study assumes that the die size 
and the power budget stay the same as technology scales, 

an assumption in line with the common practice for micro-
processor design. Below we briefly discuss each of the three 
models.

Device scaling model (M-Device). Two device (transistor) 
scaling models provide the area, power, and frequency 
scaling factors at technology nodes from 45nm through 
8nm. One model is based on aggressive ITRS projections16 
while the other builds on more conservative predictions 
from Shekhar Borkar’s recent study.5

Core scaling model (M-Core). Through Pareto-optimal 
curves, derived from measured data, the M-Core model 
provides the maximum performance that a single-core can 
sustain for any given area. Further, it provides the minimum 
power that is consumed to sustain this level of performance. 
At each technology node, these two Pareto frontiers, which 
constitute the M-Core model, define the best-case design 
space of single cores.

Multicore scaling model (M-CMP). The M-CMP covers 
two  mainstream classes of multicore organizations, 
multicore CPUs and many-thread GPUs, which represent 
two extreme points in the threads-per-core spectrum. The 
CPU multicore organization represents Intel Nehalem-
like multicore designs that benefit from large caches and 
offer relatively high single-thread performance. The GPU 
multicore organization represents NVIDIA Tesla-like 
lightweight cores with heavy multithreading support and 
poor single-thread performance. In modeling each of the 
two multicore organizations, we consider four topologies: 
symmetric, asymmetric, dynamic, and composed (also called 
“fused” in the literature15).
Symmetric multicore. The symmetric, or homogeneous, 
multicore topology consists of multiple copies of the 
same core operating at the same voltage and frequency 
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Figure 1. Overview of the methodology and the models.
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setting. In a symmetric multicore, the resources, includ-
ing the power and the area budget, are shared equally 
across all cores.
Asymmetric multicore. The asymmetric multicore topology 
consists of one large monolithic core and many identical 
small cores. This design uses the high-performing large core 
for the serial portion of code and leverages the numerous 
small cores as well as the large core to exploit the parallel 
portion of code.
Dynamic multicore. The dynamic multicore topology is a vari-
ation of the asymmetric multicore topology. During parallel 
code portions, the large core is shut down and, conversely, 
during the serial portion, the small cores are turned off and 
the code runs only on the large core.6, 21 Switching the cores 
off and on allows integrating more cores or using a higher 
voltage and frequency operational setting.
Composed multicore. The composed multicore topology is a 
collection of small cores that can dynamically merge together 
and compose a logical higher performance large core.15, 17 
While providing a parallel substrate for the parallel portion 
of code when unmerged, the small cores merge and compose 
a logical core that offers higher single-threaded performance 
for the serial portion.

The multicore model is an analytic model that computes 
the multicore performance and takes the core performance 
as input (obtained from M-Core), the multicore organiza-
tion (CPU-like or GPU-like), and multicore topology (sym-
metric, asymmetric, dynamic, and composed). Unlike 
previous studies, the model also takes into account applica-
tion characteristics such as memory access pattern, and the 
amount of thread-level parallelism in the workload as well 
as the microarchitectural features such as cache size and 
memory bandwidth. We choose the PARSEC benchmarks4 
to study the multicore scaling potential for successfully 
parallelized applications. PARSEC is a set of highly paral-
lel applications that are widely used to support the parallel 
architecture research.

Modeling future multicore chips. To model future 
multicore chips, we first model the building blocks, the 
future cores. We combine the device and core models to 
project the best-case design space of single cores—the Pareto 
frontiers—at future technology nodes. Any performance 
improvement for future cores will come at the cost of area or 
power as defined by the projected Pareto frontiers. Then, we 
combine all three models and perform an exhaustive design-
space search to find the optimal multicore configuration for 
each individual application considering its characteristics. 
The optimal configuration delivers the maximum multicore 
speedup for each benchmark at future technology nodes 
while enforcing area and power constraints. The gap 
between the projected speedup and the speedup we have 
come to expect with each technology generation is the dark 
silicon performance gap.

Related work. Other work has studied various subsets of 
the problem that we study comprehensively. Hill and Marty 
extend Amdahl’s Law to model multicore architectures with 
different topologies.14 Hempstead et al. introduce a variant 
of Amdahl’s Law to estimate the amount of specialization 
required to maintain 1.5× performance growth per year, 

assuming completely parallelizable code.13 Chung et al. 
study unconventional cores including custom logic, FPGAs, 
or GPUs in heterogeneous single-chip designs.7 Azizi et al. 
derive the single-core energy/performance tradeoff as 
Pareto frontiers using architecture-level statistical models 
combined with circuit-level energy-performance trade-
off functions.2 Chakraborty considers device-scaling and 
estimates a simultaneous activity factor for technology 
nodes down to 32nm.6 Venkatesh et al. estimate technology-
imposed utilization limits and motivate energy-efficient 
and application-specific core designs.22 Hardavellas et al. 
forecast the limits of multicore scaling and the emergence 
of dark silicon in servers with workloads that have an 
inherent abundance of parallelism.12

3. DEVICE MODEL (M-DEVICE)
The first step in projecting gains from more cores is develop-
ing a model that captures future transistor scaling trends. 
To highlight the challenges of nonideal device scaling, first 
we present a simplified overview of historical Dennard scal-
ing and the more recent scaling trends.

Historical device scaling trends. According to Dennard 
scaling, as the geometric dimensions of transistors scale, 
the electric field within the transistors stays constant if 
other physical features, such as the gate oxide thickness 
and doping concentrations, are reduced proportionally. 
To keep the electric field constant, the supply voltage (the 
switch on voltage) as well as the threshold voltage (the volt-
age level below which the transistor switches off) need to be 
scaled at the same rate as the dimensions of the transistor. 
With Dennard scaling, a 30% reduction in transistor length 
and width results in a 50% decrease in transistor area, dou-
bling the number of transistors that can fit on chip with 
each technology generation (Moore’s Law18). Furthermore, 
the decrease in transistor sizes results in a 30% reduction in 
delay. In total, Dennard scaling suggests a 30% reduction 
in delay (hence 40% increase in frequency), a 50% reduc-
tion in area, and a 50% reduction in power per transistor. 
As a result, the chip power stays the same as the number of 
transistors doubles from one technology node to the next 
in the same area.

Recent device scaling trends. At recent technology nodes, 
the rate of supply voltage scaling has dramatically slowed 
due to limits in threshold voltage scaling. Leakage cur-
rent increases exponentially when the threshold voltage 
is decreased, limiting threshold voltage scaling, and mak-
ing leakage power a significant and first-order constraint. 
Additionally, as technology scales to smaller nodes, phys-
ics limits decreases in gate oxide thickness. These two 
phenomena were not considered in the original Dennard 
scaling theory, since leakage power was not dominant in the 
older generations, and the physical limits of scaling oxide 
thickness were too far out to be considered. Consequently, 
Dennard scaling stopped at 90nm.8 That is, transistor area 
continues to scale at the historic rate, which allows for dou-
bling the number of transistors, while the power per tran-
sistor is not scaling at the same rate. This disparity will 
translate to an increase in chip power if the fraction of active 
transistors is not reduced from one technology generation 
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Figure 2. Design space and derivation of the Pareto frontiers.
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power/performance Pareto frontier, P(q), for these two design 
spaces, where q is the single-threaded performance of a core. 
These frontiers capture the best-case area/performance and 
power/performance tradeoffs for a core while abstracting 
away specific details of the core. We use the device scaling 
model to project the frontiers to future technologies and 
model performance, area, and power of cores fabricated at 
those nodes.

4.2. Model implementation
As Figure 2 depicts, we populate the two design spaces at 
45nm using 20 representative Intel and AMD processors 
and derive the Pareto frontiers. The curve that bounds all 
power(area)/performance points in the design space and 
minimizes power(area) required for a given level of perfor-
mance constructs the Pareto frontier. The polynomials P(q) 
and A(q) are the core model. The core performance, q, is 
the processor’s SPECmark and is collected from the SPEC 

to the next.6 The shift to multicore architectures was partly a 
response to the end of Dennard scaling.

3.1. Model structure
The device model provides transistor area, power, and 
frequency scaling factors from a base technology node (e.g. 
45nm) to future technologies. The area scaling factor corre-
sponds to the shrinkage in transistor dimensions. The fre-
quency scaling factor is calculated based on the fan-out of 
4 (FO4) delay reduction. FO4 is a process independent delay 
metric used to measure the delay of CMOS logic that identifies 
the processor frequency. FO4 is the delay of an inverter, driven 
by an inverter 4× smaller than itself, and driving an inverter 4× 
larger than itself. The power scaling factor is computed using 
the predicted frequency, voltage, and gate capacitance scal-
ing factors in accordance with the   equation.

3.2. Model implementation
We generate two device scaling models: ITRS and conserva-
tive. The ITRS model uses projections from the ITRS 2010 
technology roadmap.16 The conservative model is based on 
predictions by Shekhar Borkar and represents a less opti-
mistic view.5 The parameters used for calculating the power 
and performance scaling factors are summarized in Table 
1. We allocate 20% of the chip-power budget to leakage 
power and assume chip designers can maintain this ratio.

4. CORE MODEL (M-CORE)
The second step in estimating future multicore perfor-
mance is modeling a key building block, the processor core.

4.1. Model structure
We build a technology-scalable core model by populating the 
area/performance and power/performance design spaces 
with the data collected for a set of processors; all fabricated 
in the same technology node. The core model is the combi-
nation of the area/performance Pareto frontier, A(q), and the 

Table 1. Scaling factors with ITRS and conservative projections.
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scaling  
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scaling 
factor 

(/45nm)

Capacitance 
scaling  
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scaling  
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45* 1.00 1.00 1.00 1.00
32* 1.09 0.93 0.70 0.66
22† 2.38 0.84 0.33 0.54
16† 3.21 0.75 0.21 0.38
11† 4.17 0.68 0.13 0.25
8† 3.85 0.62 0.08 0.12

31% frequency increase and 35% power reduction per node
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32 1.10 0.93 0.75 0.71
22 1.19 0.88 0.56 0.52
16 1.25 0.86 0.42 0.39
11 1.30 0.84 0.32 0.29
8 1.34 0.84 0.24 0.22

6% frequency increase and 23% power reduction per node

*Extended planar bulk transistors.
†Multi-gate transistors.
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Website.20 We estimate the core power budget using the TDP 
reported in processor datasheets. TDP is the chip-power 
budget, or the amount of power the chip can dissipate with-
out exceeding the transistor junction temperature. We use 
die photos of the four microarchitectures, Intel Atom, Intel 
Core, AMD Shanghai, and Intel Nehalem, to estimate the 
core areas (excluding level 2 and level 3 caches). Since the 
focus of this work is to study the impact of technology con-
straints on logic scaling rather than cache scaling, we derive 
the Pareto frontiers using only the portion of power budget 
and area allocated to the core in each processor excluding 
the uncore components.

As illustrated in Figure 2, a cubic polynomial, P(q), is fit to 
the points along the edge of the power/performance design 
space and a quadratic polynomial (Pollack’s rule19), A(q), to 
the points along the edge of the area/performance design 
space. The Intel Atom Z520 with an estimated 1.89 W TDP 
per core represents the lowest power design (lower-left fron-
tier point), and the Nehalem-based Intel Core i7-965 Extreme 
Edition with an estimated 31.25 W TDP per core represents 
the highest performing design (upper-right frontier point). 
The points along the scaled Pareto frontier are used as the 
search space for determining the best core configuration by 
the multicore model.

5. MULTICORE MODEL (M-CMP)
The last step in modeling multicore scaling is to develop a 
detailed chip-level model (M-CMP) that integrates the area 
and power frontiers, microarchitectural features, and appli-
cation behavior, while accounting for the chip organization 
(CPU-like or GPU-like) and its topology (symmetric, asym-
metric, dynamic, or composed).

5.1. Model structure
Guz et al. proposed a model to consider first-order impacts 
of microarchitectural features (cache organization, memory 
bandwidth, number of threads per core, etc.) and workload 
characteristics (memory access pattern).10 To first order, 
their model considers stalls due to memory dependences 
and resource constraints (bandwidth or functional units). 
We extend their approach to build our multicore model. Our 
extensions incorporate additional application characteris-
tics, microarchitectural features, and physical constraints, 
and covers both homogeneous and heterogeneous multicore 
topologies.

This model uses single-threaded cores with large caches 
to cover the CPU multicore design space and massively 
threaded cores with minimal caches to cover the GPU mul-
ticore design while modeling all four topologies. The input 
parameters to the model, and how, if at all, they are affected 
by the multicore design choices are listed in Table 2.

Multicore topologies. The multicore model is an extended 
Amdahl’s Law1 equation that incorporates the multicore 
performance (Perf ) calculated from (2)–(5):

	 � (1)

The M-CMP model (1) measures the multicore speedup 
with respect to a baseline multicore (PerfB). That is, the 

parallel portion of code ( f ) is sped up by SParallel = PerfP/PerfB 
and  the  serial portion of code (1 − f ) is sped up by SSerial = 
PerfS/PerfB.

The number of cores that fit on the chip is calculated as 
follows based on the topology of the multicore, its area bud-
get (AREA), its power budget (TDP), each core’s area (A(q) ), 
and each core’s power (P(q) ).

	 	

For heterogeneous multicores, qS is the single-threaded 
performance of the small cores and qL is the single-threaded 
performance of the large core. The area overhead of sup-
porting composability is t; however, no power overhead is 
assumed for composability support.

Microarchitectural features. Multithreaded performance 
(Perf ) of an either CPU-like or GPU-like multicore running 
a fully parallel ( f = 1) and multithreaded application is 

Table 2. M-CMP parameters with default values from 45nm Nehalem.

Parameter Description Default Affected by

N Number of cores 4 Multicore topology

T Number of threads  
per core

1 Core style

freq Core frequency (MHz) 3200 Core performance

CPI Cycles per instruction 
(zero-latency cache 
accesses)

1 Core performance, 
application

C1 L1 cache size per core 
(KB)

64 Core style

C2 L2 cache size per chip 
(MB)

2 Core style, multi-
core topology

t1 L1 access time (cycles) 3 –

t2 L2 access time (cycles) 20 –

t Memory access time 
(cycles)

426 Core performance

BW Maximum memory 
bandwidth (GB/s)

200 Technology node

b Bytes per memory 
access (B)

64 –

f Fraction of code that  
can be parallel

Varies Application

r Fraction of  
instructions that are 
memory accesses

Varies Application

a1, b1 L1 cache miss rate  
function constants

Varies Application

a2, b2 L2 cache miss rate  
function constants

Varies Application
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each processor design point. We start by assuming that the 
Nehalem core has a CPIexe of . Then, the smallest core, an 
Atom processor, should have a CPIexe such that the ratio of 
its M-CMP performance to the Nehalem core’s M-CMP per-
formance is the same as the ratio of their SPECmark scores 
(q). We assume CPIexe does not change as technology scales, 
while frequency does change as discussed in Section 6.1.

Microarchitectural features. A key part of the detailed 
model is the set of input parameters that model the micro-
architecture of the cores. For single-thread (ST) cores, we 
assume each core has a 64KB L1 cache, and chips with only 
ST cores have an L2 cache that is 30% of the chip area. Ma-
ny-thread (MT) cores have small L1 caches (32KB for every 
8 cores), support multiple hardware contexts (1024 threads 
per 8 cores) and a thread register file, and have no L2 cache. 
From Atom and Tesla die photos, we estimate that 8 small 
MT cores, their shared L1 cache, and their thread register 
file can fit in the same area as one Atom processor. We as-
sume that off-chip bandwidth (BWmax) increases linearly as 
process technology scales down while the memory access 
time is constant.

Composed multicores. We assume that t (area overhead 
of composability) increases from 10% to 400% depending 
on the total area of the composed core and performance of 
the composed core cannot exceed performance of a single 
Nehalem core at 45nm.

Constraints and baseline. The area and power bud-
gets are derived from the highest-performing quad-core 
Nehalem multicore at 45nm excluding the L2 and L3 cach-
es. They are 111 mm2 and 125 W, respectively. The M-CMP 
multicore speedup baseline is a quad-Nehalem multicore 
that fits in the area and power budgets. The reported dark 
silicon projections are for the area budget that is solely 
allocated to the cores, not caches and other ‘uncore’ com-
ponents. The actual fraction of chip that goes dark may 
be higher.

6. COMBINING MODELS
6.1. Device × core model
To study core scaling in future technology nodes, we scaled 
the 45nm Pareto frontiers down to 8nm by scaling the 
power and performance of each processor data point using 
the DevM model and then re-fitting the Pareto optimal 
curves at each technology node. Performance, measured 
in SPECmark, is assumed to scale linearly with frequency. 
This optimistic assumption ignores the effects of memory 
latency and bandwidth on the core performance, and thus 
actual performance gains through scaling may be lower. 
Based on the optimistic ITRS model, scaling a microarchi-
tecture (core) from 45nm to 8nm will result in a 3.9× per-
formance improvement and an 88% reduction in power 
consumption. Conservative scaling, however, suggests 
that performance will increase only by 34%, and power will 
decrease by 74%.

6.2. Device × core × multicore model
All three models are combined to produce final projec-
tions on optimal multicore speedup, optimal number 
of cores, and amount of dark silicon. To determine the 

calculated in terms of instructions per second in (2) by mul-
tiplying the  number of cores (N) by the core utilization (h) 
and scaling by the ratio of the processor frequency to CPIexe:

	 � (2)

The CPIexe parameter does not include stalls due to cache 
accesses, which are considered separately in the core utili-
zation (h). The core utilization is the fraction of time that a 
thread running on the core can keep it busy. It is modeled 
as a function of the average time spent waiting for each 
memory access (t), fraction of instructions that access the 
memory (rm), and the CPIexe:

	 � (3)

The average time spent waiting for memory accesses (t) is a 
function of the time to access the caches (tL1 and tL2), time to 
visit memory (tmem), and the predicted cache miss rate (mL1 
and mL2):

	 � (4)

	 � (5)

5.2. Model implementation
The M-CMP model incorporates the Pareto frontiers, physi-
cal constraints, real application characteristics, and realis-
tic microarchitectural features into the multicore speedup 
projections as discussed below.

Application characteristics. The input parameters 
that characterize an application are its cache behavior, 
fraction of instructions that are loads or stores, and frac-
tion of parallel code. For the PARSEC benchmarks, we 
obtain this data from two previous studies.3, 4 To obtain 
the fraction of parallel code ( f ) for each benchmark, we 
fit an Amdahl’s Law-based curve to the reported speed-
ups across different numbers of cores from both studies. 
The value of f ranges from 0.75 to 0.9999 depending on 
the benchmark.

Obtaining frequency and CPIexe from Pareto frontiers. 
To incorporate the Pareto-optimal curves into the M-CMP 
model, we convert the SPECmark scores (q) into an esti-
mated CPIexe and core frequency. We assume the core fre-
quency scales linearly with performance, from 1.5 GHz for 
an Atom core to 3.2 GHz for a Nehalem core. Each applica-
tion’s CPIexe is dependent on its instruction mix and use of 
hardware resources (e.g., functional units and out-of-order 
issue width). Since the measured CPIexe for each benchmark 
at each technology node is not available, we use the M-CMP 
model to generate per benchmark CPIexe estimates for each 
design point along the Pareto frontier. With all other model 
inputs kept constant, we iteratively search for the CPIexe at 
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best multicore configuration at each technology node, 
we sweep the design points along the scaled area/per-
formance and power/performance Pareto frontiers 
(M-Device  × M-Core) as these points represent the most 
efficient designs. At each technology node, for each core 
design on the scaled frontiers, we construct a multicore 
chip consisting of one such core. For a symmetric mul-
ticore chip, we iteratively add identical cores one by one 
until the area or power budget is hit, or performance 
improvement is limited. We sweep the frontier and con-
struct a symmetric multicore for each processor design 
point. From this set of symmetric multicores, we pick the 
multicore with the best speedup as the optimal symmet-
ric multicore for that technology node. The procedure is 
similar for other topologies. This procedure is performed 
separately for CPU-like and GPU-like organizations. The 
amount of dark silicon is the difference between the area 
occupied by cores for the optimal multicore and the area 
budget allocated to the cores.

7. SCALING AND FUTURE MULTICORES
We apply the combined models to study the future of mul-
ticore designs and their performance-limiting factors. The 
results from this study provide a detailed analysis of mul-
ticore behavior for future technologies considering 12 real 
applications from the PARSEC suite.

7.1. Speedup projections
Figure 3 summarizes all of the speedup projections in a 
single scatter plot. For every benchmark at each technol-
ogy node, we plot the speedup of eight possible multicore 
configurations (CPU-like, GPU-like) × (symmetric, asym-
metric, dynamic, composed). The solid line is exponential 
performance scaling–doubling performance every tech-
nology generation.
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Figure 3. Speedup across process technology nodes across all 
organizations and topologies with PARSEC benchmarks.
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Figure 4. Impact of application parallelism and power budget on 
speedup at 8nm.

With optimal multicore configurations for each individual 
application, at 8nm, only 3.7× (conservative scaling) 
or  7.9× (ITRS scaling) geometric mean speedup is 
possible, as shown by the dashed line in Figure 3.

Highly parallel workloads with a degree of parallelism 
higher than 99% will continue to benefit from multicore 
scaling.

7.2. Dark silicon projections

With ITRS projections, at 8nm, over 50% of the chip will 
be dark and cannot be utilized.

At 8nm, the geometric mean speedup for dynamic and 
composed topologies is only 10% higher than the 
geometric mean speedup for symmetric topologies.

To understand whether parallelism or the power constraint 
is the primary source of the dark silicon performance gap, 
we vary each of these factors in two experiments at 8nm. 
First, as depicted in Figure 4(a), we keep the power budget 
constant (our default budget is 125 W), and vary the level of 
parallelism in the PARSEC applications from 0.75 to 0.99, 
assuming programmer effort can realize this improve-
ment. We see performance improves slowly as the paral-
lelism level increases, with most benchmarks reaching 
a speedup of about only 15× at 99% parallelism. Provided 
that the power budget is the only limiting factor, typical 
upper-bound ITRS-scaling speedups would still be limited 
to 15×. With conservative scaling, this best-case speedup is 
limited to 6.3×.

For the second experiment, we keep each application’s 
parallelism at its real level and vary the power budget from 
50 W to 500 W. As Figure 4(b) shows, eight of 12 bench-
marks show no more than 10× speedup even with a prac-
tically unlimited power budget. That is, increasing core 
counts beyond a certain point does not improve perfor-
mance due to the limited parallelism in the applications 
and the Amdahl’s Law. Only four benchmarks have suffi-
cient parallelism to even hypothetically sustain the expo-
nential level of speedup.
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7.3. Core count projections
Different applications saturate performance improve-
ments at different core counts. We consider the chip con-
figuration that provides the best speedup for all of the 
applications as an ideal configuration. Figure 5 shows 
the number of cores (solid line) for the ideal CPU-like 
dynamic multicore configuration across technology gen-
erations. We choose the dynamic topology since it deliv-
ers the highest performance. The dashed line illustrates 
the number of cores required to achieve 90% of the ideal 
configuration’s geometric mean speedup across PARSEC 
benchmarks. As depicted, with ITRS scaling, the ideal con-
figuration integrates 442 cores at 8nm; however, 35 cores 
reach the 90% of the speedup achievable by 442 cores. 
With conservative scaling, the 90% speedup core count is  
20 at 8nm.

we ignore any increase in L2 cache power or increase in L2 
cache access latency. Across the PARSEC benchmarks, the 
optimal percentage of chip devoted to cache varies from 
20% to 50% depending on benchmark memory access 
characteristics. Compared to the unified 30% cache area 
for all the applications, using each application’s optimal 
cache area improves performance merely by at most 20% 
across all benchmarks.

Memory bandwidth. Figure 6(b) illustrates the sensitivity 
of PARSEC performance to the available memory bandwidth 
for symmetric GPU multicores at 45nm. As the memory 
bandwidth increases, the speedup improves since more 
threads can be fed with data; however, the benefits are lim-
ited by power and/or parallelism and in 10 out of 12 bench-
marks speedups do not increase by more than 2× compared 
to the baseline, 200GB/s.

SMT. To simplify the discussion, we did not consider 
SMT support for the processors (cores) in the CPU multicore 
organization. SMT support can improve power efficiency of 
the cores for parallel workloads to some extent. We studied 
2-way, 4-way, and 8-way SMT with no area or energy penalty, 
and observed that speedup improves with 2-way SMT by 1.5× 
in the best case and decreases as much as 0.6× in the worst 
case due to increased cache contention; the range for 8-way 
SMT is 0.3–2.5×.

8. ASSUMPTIONS AND LIMITATIONS
We discuss some of the important limitations of our 
model and argue that they do not significantly change our 
final results.

Dynamic voltage and frequency scaling (DVFS). Our 
device and core models do not explicitly consider 
dynamic voltage and frequency scaling; instead, we 
take an optimistic approach to account for their best-
case settings. When deriving the Pareto frontiers, we 
set each  processor to operate at its optimal voltage and 
frequency setting (Vddmin

, Freqmax). At a fixed Vdd setting, 
scaling down the frequency from Freqmax results in a 
power/performance point inside the optimal Pareto 
curve, a suboptimal design point. However, scaling 
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Figure 5. Number of cores for the ideal CPU-like dynamic multicore 
configurations and the number of cores delivering 90% of the 
speedup achievable by the ideal configurations across the PARSEC 
benchmarks.
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Figure 6. Effect of L2 size and memory bandwidth on speedup at 45nm.

Due to limited parallelism in the PARSEC suite, even 
with novel heterogeneous topologies and optimistic 
ITRS scaling, integrating more than 35 cores improves 
performance only slightly for CPU-like topologies.

7.4. Sensitivity studies
Our analysis thus far examined typical configurations 
and showed poor scalability for the multicore designs. 
A natural question is, can simple configuration changes 
(percentage cache area, memory bandwidth, etc.) provide 
significant benefits that can bridge the dark silicon gap? 
We investigate three such simple changes: L2 cache 
size,  memory bandwidth, and simultaneous multi-
threading (SMT).

L2 cache area. Figure 6(a) shows the optimal speedup 
at 45nm as the amount of a symmetric CPU’s chip area 
devoted to L2 cache varies from 0% to 100%. In this study 

The level of parallelism in PARSEC applications is the 
primary contributor to the dark silicon performance gap. 
However, in realistic settings the dark silicon resulting 
from power constraints limits the achievable speedup.
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workloads, allowing the economics of process scaling 
to hold. A key question for the computing community is 
whether scaling multicores will provide the performance 
and value needed to scale down many more technology 
generations. Are we in a long-term “multicore era,” or 
will it instead be a “multicore decade” (2004–2014)? Will 
industry need to move in different, perhaps radical, direc-
tions to justify the cost of scaling? To answer the question, 
this paper models an upper bound on parallel application 
performance available from multicore and CMOS scaling–
assuming no major disruptions in process scaling or core 
efficiency. Using a constant area and power budget, this 
study showed that the space of known multicore designs 
(CPU, GPU, their hybrids) or novel heterogeneous topolo-
gies (e.g., dynamic or composable) falls far short of the 
historical performance gains to which the microprocessor 
industry is accustomed. Even with aggressive ITRS scal-
ing projections, scaling cores achieve a geometric mean 
7.9× speedup in 10 years at 8nm—a 23% annual gain. Our 
findings suggest that without process breakthroughs, 
directions beyond multicore are needed to provide perfor-
mance scaling. There are reasons to be both pessimistic 
and optimistic.

9.1. Pessimistic view
A pessimistic interpretation of this study is that the per-
formance improvements to which we have grown accus-
tomed over the past 40 years are unlikely to continue with 
multicore scaling as the primary driver. The transition 
from multicore to a new approach is likely to be more dis-
ruptive than the transition to multicore. Furthermore, to 
sustain the current cadence of Moore’s Law, the transition 
needs to be made in only a few years, much shorter than 
the traditional academic time frame for research and tech-
nology transfer. Major architecture breakthroughs in “al-
ternative” directions such as neuromorphic computing, 
quantum computing, or bio-integration will require even 
more time to enter the industrial product cycle. Further-
more, while a slowing of Moore’s Law will obviously not 
be fatal, it has significant economic implications for the 
semiconductor industry.

9.2. Optimistic view
Technology. The study shows if energy efficiency break-
throughs are made on supply voltage and process scaling, 
the performance improvement potential for multicore scal-
ing is still high for applications with very high degrees of 
parallelism.

The need for microarchitecture innovations. Our study 
shows that fundamental processing limitations emanate 
from the processor core. The limited improvements on 
single-threaded performance is the inhibiting factor. 
Clearly, architectures that move well past the power/
performance Pareto-optimal frontier of today’s designs 
are necessary to bridge the dark silicon gap and utilize 
the increases in transistor count. Hence, improvements 
to the processor core efficiency will have significant 
impact on performance improvement and will enable 
technology scaling even though the core consumes 

voltage up and operating at a new (V ′ddmin
, Freq′max) setting 

results in a different power-performance point that is 
still at the optimal frontier. Since we investigate all of the 
points along the frontier to find the optimal multicore 
configuration, our study covers multicore designs that 
induce heterogeneity to symmetric topologies through 
dynamic voltage and frequency scaling.

Architecture details in multicore model and validation. 
The multicore model considers the first-order impact of 
caching, parallelism, and threading under assumptions that 
result only in optimistic projections (i.e., favorable multicore 
scaling). Comparing the output of the M-CMP model against 
published empirical results confirm that our model 
always overpredicts multicore performance. The model 
optimistically assumes that the workload is homogeneous, 
work is infinitely parallel during parallel sections of code, 
memory accesses never stall due to a previous access, and 
no thread synchronization, operating system serialization, 
or swapping occurs.

Server workloads. We do not directly study the server 
workloads, a domain where applications are highly 
concurrent and embarrassingly parallel. However, even 
in these types of workloads, resource scheduling and 
structural hazards such as competition for cache, 
memory bandwidth, DRAM storage, SSD IO, network 
IO, etc. limit parallelism. These factors induce a serial 
portion to the execution of the workloads. The key 
challenge is to measure the amount of serialization from 
these structural hazards, which is an interesting future 
study. Once the amount of serialization is measured, our 
models can be applied to the server workloads to project 
the amount of dark silicon and its effects. Generally, 
if the effective parallelism is less than 99%, the results 
suggest that dark silicon and its effects will manifest. 
Furthermore, Hardavellas et al. forecast the limits of 
multicore scaling and the emergence of dark silicon in 
servers with workloads that have an inherent abundance 
of parallelism.12 They project that for server workloads 
such as online transaction processing (OLTP), decision 
support systems (DSS), and Web server (Apache), even 
with 3D-stacked memory, a significant amount of a 
multicore chip will be dark as technology scales. They 
determine that power and limited and nonscalable 
off-chip bandwidth are the primary limiting factors to 
multicore performance scaling and result in dark silicon 
for server workloads.

Alternative cores. We do not consider embedded ARM 
or Tilera cores in this work because they are designed for 
restricted domains and their SPECmark scores are not 
available for a meaningful comparison.

9. A PATH FORWARD?
For decades, Moore’s Law plus Dennard scaling permit-
ted more transistors, faster transistors, and more energy 
efficient transistors with each new process node, justi-
fying the enormous costs required to develop each new 
process node. Dennard scaling’s failure led industry to 
race down the multicore path, which for sometime per-
mitted performance scaling for parallel and multitasked 
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only 20% of the power budget for an entire laptop, 
smartphone, tablet, etc. When performance becomes 
limited, microarchitectural techniques that occasionally 
use parts of the chip to deliver outcomes orthogonal to 
performance, such as security, programmer productivity, 
and software maintainability are ways to sustain the 
economics of the industry. We believe this study will 
revitalize and trigger microarchitecture innovations, 
making the case for their urgency and their potential 
impact.

Efficiency through specialization. Recent work has 
quantified three orders of magnitude difference in efficiency 
between general-purpose processors and ASICs.11 However, 
there is a well-known tension between efficiency and 
programmability. Designing ASICs for the massive base of 
quickly changing general-purpose applications is currently 
infeasible. Programmable accelerators, such as GPUs and 
FPGAs, and specialized hardware can provide an intermediate 
point between the efficiency of ASICs and the generality of 
conventional processors, gaining significant improvements 
for specific domains of applications. Even though there is 
an emerging consensus that specialization and acceleration 
is a promising approach for efficiently utilizing the growing 
number of transistors, developing programming abstractions 
that allow general-purpose applications to leverage 
specialized hardware and programmable accelerators remain 
challenging.

Opportunity for disruptive innovations. Our study is 
based on a model that takes into account properties of 
devices, processor cores, multicore organizations, and 
topologies. Thus the model inherently provides the areas 
to focus on for innovation. To surpass the dark silicon 
performance barrier highlighted by our work, designers 
must develop systems that use significantly more 
energy-efficient techniques. Some examples include 
device abstractions beyond digital logic (error-prone 
devices); processing paradigms beyond superscalar, 
SIMD, and SIMT; and program semantic abstractions 
allowing probabilistic and approximate computation. 
There is an emerging synergy between the applications 
that can tolerate approximation and the unreliability 
in the computation fabric as technology scales down. 
If done in a disciplined manner, relaxing the high tax 
of providing perfect accuracy at the device, circuit, 
and architecture level can provide a huge opportunity 
to improve performance and energy efficiency for the 
domains in which applications can tolerate approximate 
computation yet deliver acceptable outputs. Our results 
show that such radical departures are needed and the 
model provides quantitative measures to examine the 
impact of such techniques.

The model we have developed in the paper is useful to 
determine an optimal multicore configuration given a work-
load set, a power and area budget, and a technology gen-
eration. It can also be used to project expected multicore 
performance for the best configurations under a range of 
assumptions. We have made the models available for gen-
eral use at the following URL: http://research.cs.wisc.edu/
vertical/DarkSilicon.
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