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Since 2004, processor designers have increased core counts to exploit Moore’s Law scaling, rather than fo-
cusing on single-core performance. The failure of Dennard scaling, to which the shift to multicore parts is
partially a response, may soon limit multicore scaling just as single-core scaling has been curtailed. This
paper models multicore scaling limits by combining device scaling, single-core scaling, and multicore scaling
to measure the speedup potential for a set of parallel workloads for the next five technology generations. For
device scaling, we use both the ITRS projections and a set of more conservative device scaling parameters.
To model single-core scaling, we combine measurements from over 150 processors to derive Pareto-optimal
frontiers for area/performance and power/performance. Finally, to model multicore scaling, we build a de-
tailed performance model of upper-bound performance and lower-bound core power. The multicore designs
we study include single-threaded CPU-like and massively threaded GPU-like multicore chip organizations
with symmetric, asymmetric, dynamic, and composed topologies. The study shows that regardless of chip
organization and topology, multicore scaling is power limited to a degree not widely appreciated by the com-
puting community. Even at 22 nm (just one year from now), 21% of a fixed-size chip must be powered off,
and at 8 nm, this number grows to more than 50%. Through 2024, only 7.9× average speedup is possible
across commonly used parallel workloads for the topologies we study, leaving a nearly 24-fold gap from a
target of doubled performance per generation.

Categories and Subject Descriptors: C.0 [General]: Modeling of computer architecture; system architectures

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Dark silicon, modeling, power, technology scaling, multicore

ACM Reference Format:
Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and Burger, D. 2012. Power limitations and
dark silicon challenge the future of multicore. ACM Trans. Comput. Syst. 30, 3, Article 11 (August 2012),
27 pages.
DOI = 10.1145/2324876.2324879 http://doi.acm.org/10.1145/2324876.2324879

This work was supported by the National Science Foundation, under grant CCF-0845751, grant CCF-
0917238, and grant CNS-0917213.
Authors’ addresses: H. Esmaeilzadeh, Computer Science & Engineering, University of Washington, Box
352350, AC 101, 185 Stevens Way, Seattle, WA 98195; email: hadianeh@cs.washington.edu; E. Blem and
K. Sankaralingam, Department of Computer Science, University of Wisconsin-Madison, 1210 West Dayton
Street, Madison, WI 53706; R. St. Amant, Department of Computer Science, The University of Texas at
Austin, 1616 Guadalupe, Suite 2.408, Austin, TX 78701; D. Burger, Microsoft Research, One Microsoft Way,
Redmond, WA 98052.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/08-ART11 $15.00

DOI 10.1145/2324876.2324879 http://doi.acm.org/10.1145/2324876.2324879

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 11, Publication date: August 2012.



11:2 H. Esmaeilzadeh et al.

1. INTRODUCTION

Moore’s Law [Moore 1965] (the doubling of transistors on chip every 18 months) has
been a fundamental driver of computing. For the past three decades, through device,
circuit, microarchitecture, architecture, and compiler advances, Moore’s Law, coupled
with Dennard scaling [Dennard et al. 1974], has resulted in commensurate exponential
performance increases. The recent shift to multicore designs has aimed to increase the
number of cores along with transistor count increases, and continue the proportional
scaling of performance. As a result, architecture researchers have started focusing on
100-core and 1000-core chips and related research topics and called for changes to the
undergraduate curriculum to solve the parallel programming challenge for multicore
designs at these scales.

With the failure of Dennard scaling–and thus slowed supply voltage scaling–core
count scaling may be in jeopardy, which would leave the community with no clear scal-
ing path to exploit continued transistor count increases. Since future designs will be
power limited, higher core counts must provide performance gains despite the wors-
ening energy and speed scaling of transistors, and given the available parallelism in
applications. By studying these characteristics together, it is possible to predict for how
many additional technology generations multicore scaling will provide a clear benefit.
Since the energy efficiency of devices is not scaling along with integration capacity,
and since few applications (even from emerging domains such as recognition, mining,
and synthesis [Bienia et al. 2008]) have parallelism levels that can efficiently use a
100-core or 1000-core chip, it is critical to understand how good multicore performance
will be in the long term. In 2024, will processors have 32 times the performance of
processors from 2008, exploiting five generations of core doubling?

Such a study must consider devices, core microarchitectures, chip organizations,
and benchmark characteristics, applying area and power limits at each technology
node. This article considers all those factors together, projecting upper-bound perfor-
mance achievable through multicore scaling, and measuring the effects of non-ideal
device scaling, including the percentage of “dark silicon” (transistor under-utilization)
on future multicore chips. Additional projections include best core organization, best
chip-level topology, and optimal number of cores.

This article considers technology scaling projections, single-core design scaling, mul-
ticore design choices, actual application behavior, and microarchitectural features.
Previous studies have also analyzed these features in various combinations, but not
together [Chakraborty 2008; Cho and Melhem 2008; Chung et al. 2010; Hempstead
et al. 2009; Hill and Marty 2008; Lee et al. 2009; Loh 2008; Venkatesh et al. 2010; Woo
and Lee 2008]. This study builds and combines three models to project performance
and the fraction of “dark silicon” (transistor integration underutilization) on fixed-size
and fixed-power chips as listed here.

— Device model (DevM). Area, frequency, and power requirements at future technol-
ogy nodes through 2024.

— Core model (CorM). Power/performance and area/performance single core Pareto
frontiers derived from a large set of diverse microprocessor designs.

— Multicore model (CmpM). Area, power and performance of any application for “any”
chip topology for CPU-like and GPU-like multicore performance.

— DevM × CorM. Pareto frontiers at future technology nodes; any performance im-
provements for future cores will come only at the cost of area or power as defined by
these curves.

— DevM × CorM × CmpM and an exhaustive state-space search. Maximum multicore
speedups for future technology nodes while enforcing area, power, and benchmark
constraints.
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Fig. 1. Overview of the models and the methodology.

The results from this study provide detailed best-case multicore performance
speedups for future technologies considering real applications from the PARSEC
benchmark suite [Bienia et al. 2008]. Our results evaluating the PARSEC benchmarks
and our upper-bound analysis confirm the following intuitive arguments.

(i) Contrary to conventional wisdom on performance improvements from using mul-
ticores, over five technology generations, only 7.9× average speedup is possible
using ITRS scaling.

(ii) While transistor dimensions continue scaling, power limitations curtail the us-
able chip fraction. At 22 nm (i.e., in 2012), 21% of the chip will be dark and at
8 nm, over 50% of the chip will not be utilized using ITRS scaling.

(iii) Neither CPU-like nor GPU-like multicore designs are sufficient to achieve the ex-
pected performance speedup levels. Radical microarchitectural innovations are
necessary to alter the power/performance Pareto frontier to deliver speedups
commensurate with Moore’s Law.

2. OVERVIEW

As depicted in Figure 1, we build and combine three models to project performance
and integration capacity utilization as technology scales. Ultimately, the combination
of these models predicts multicore performance speedup across future technology gen-
erations and shows a gap between the projected speedup and the speedup we have
come to expect with each technology scaling. We refer to this speedup gap as the dark
silicon gap. There following three models are basis for our projections.

Device Model (DevM). We build device scaling models that provides the area,
power, and frequency scaling factors at technology nodes from 45 nm to 8 nm. We
consider ITRS Roadmap projections [ITRS 2011] and conservative scaling parameters
from Borkar’s recent study [Borkar 2010]. We also build two synthetic device scaling
models to study transistor scaling trends beyond ITRS and conservative projections.
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Core Model (CorM). Through Pareto-optimal curves [Horowitz et al. 2005], the
core-level model provides the maximum performance that a single-core can sustain
for any given area. Further, it provides the minimum power (or energy) that must
be consumed to sustain this level of performance. To quantify, we measure the core
performance in terms of SPECmark. We consider empirical data from a large set of
processors and use curve fitting to obtain the Pareto-optimal frontiers for single-core
area/performance and power/performance trade-offs.

Multicore Model (CmpM). We model two mainstream classes of multicore organi-
zations, multi-core CPUs and many-thread GPUs, which represent two extreme points
in the threads-per-core spectrum. The CPU multicore organization represents In-
tel Nehalem-like, heavy-weight multicore designs with fast caches and high single-
thread performance. The GPU multicore organization represents NVIDIA Tesla-like
lightweight cores with heavy multithreading support and poor single-thread perfor-
mance. For each multicore organization, we consider four topologies: symmetric, asym-
metric, dynamic, and composed (also called “fused” in the literature).

Symmetric Multicore. The symmetric, or homogeneous, multicore topology consists
of multiple copies of the same core operating at the same voltage and frequency setting.
In a symmetric multicore, the resources, including the power and the area budget, are
shared equally across all cores.

Asymmetric Multicore. The asymmetric multicore topology consists of one large
monolithic core and many identical small cores. The design leverages the high-
performing large core for the serial portion of code and leverages the numerous small
cores as well as the large core to exploit the parallel portion of code.

Dynamic Multicore. The dynamic multicore topology is a variation of the asym-
metric multicore topology. During parallel code portions, the large core is shut down
and, conversely, during the serial portion, the small cores are turned off and the code
runs only on the large core [Chakraborty 2008; Suleman et al. 2009].

Composed Multicore. The composed multicore topology consists of a collection of
small cores that can logically fuse together to compose a high-performance large core
for the execution of the serial portion of code [Ipek et al. 2007; Kim et al. 2007]. In
either serial or parallel cases, the large core or the small cores are used exclusively.

Table I outlines the design space we explore and explains the roles of the cores
during serial and parallel portions of applications. Single-thread (ST) cores are uni-
processor style cores with large caches and many-thread (MT) cores are GPU-style
cores with smaller caches; both are described in more detail in Section 5.

This article describes an analytic model that provides system-level performance us-
ing as input the core’s performance (obtained from CorM) and the multicore’s organiza-
tion (CPU-like or GPU-like). Unlike previous studies, the model considers application
behavior, its memory access pattern, the amount of thread-level parallelism in the
workload, and microarchitectural features such as cache size, memory bandwidth, etc.
We choose the PARSEC benchmarks because they represent a set of highly parallel
applications that are widely studied in the research community.

Heterogeneous configurations such as AMD Fusion and Intel Sandy Bridge combine
CPU and GPU designs on a single chip. The asymmetric and dynamic GPU topologies
resemble those two designs, and the composed topology models configurations similar
to AMD Bulldozer. For GPU-like multicores, this study assumes that the single ST core
does not participate in parallel work. Finally, our methodology implicitly models het-
erogeneous cores of different types (mix of issue widths, frequencies, etc.) integrated
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Table I. CPU and GPU Topologies (ST Core: Single-Thread Core and MT: Many-Thread Core)

Code Symmetric Asymmetric Dynamic Composed
C

P
U

M
u

lt
ic

or
es Serial 1 ST Core 1 Large ST Core 1 Large ST Core 1 Large ST Core

Fraction

Parallel N ST Cores 1 Large ST Core + N Small ST Cores N Small ST Cores N Small ST Cores
Fraction

G
P

U
M

u
lt

ic
or

es

Serial 1 MT Core 1 Large ST Core 1 Large ST Core 1 Large ST Core
Fraction (1 Thread) (1 Thread) (1 Thread) (1 Thread)

Parallel N MT Cores 1 Large ST Core + N Small MT Cores N Small MT Cores N Small MT Cores
Fraction (Multiple Threads) (1 Thread) (Multiple Threads) (Multiple Threads) (Multiple Threads)

on one chip. Since we perform a per-benchmark optimal search for each organization
and topology, we implicitly cover the upper-bound of this heterogeneous case.

3. DEVICE MODEL

We begin with a brief historical perspective on device scaling and then describe our
model and its implementation.

Historical Perspective on Device Scaling. Historically, transistor scaling has re-
liably delivered significant performance improvements each generation by allowing
more transistors on chip that run faster without increasing overall chip power con-
sumption. The CMOS transistor scaling has traditionally followed Dennard’s scaling
scheme [Dennard et al. 1974]. Dennard scaling calls for a 30% reduction in transistor
dimensions each generation, keeping the electric fields within the transistor constant.
A 30% reduction in transistor length and width results in a 50% decrease in transis-
tor area, doubling the number of transistors that can fit on chip in each technology
generation, in accordance with Moore’s Law [Moore 1965]. Additionally, the 30% de-
lay reduction that results from decreased transistor length allows for a 40% increase
in frequency and, therefore, performance. To keep the electric field constant, supply
voltage is reduced by 30%. Oxide thickness is also reduced by 30%, resulting in a
30% decrease in capacitance, and ultimately power is reduced by 50%. Therefore, dou-
bling the number of transistors on chip does not result in an increase in chip power
consumption. Dennard scaling stopped at 90nm [Dennard et al. 2007].

Recent Device Scaling Trends. As supply voltage scales down, so must the transis-
tor threshold voltage to preserve reliable binary margins at the gate level. However,
leakage current increases exponentially with a decrease in threshold voltage. Con-
trolling leakage has limited reductions in threshold voltage, thereby limiting supply
voltage scaling. Physical limitations in further scaling gate oxide thickness, as well
as limited supply voltage scaling, restricts the device performance increase and de-
vice power reduction that can be achieved with transistor scaling. On the other hand,
the dimensions of the transistors are scaling with historical rates doubling the de-
vice integration capacity every process technology generation. The disparity between
the transistor area reduction and its power reduction results in dark silicon, under-
utilization of the device integration capacity [Chakraborty 2008]. In addition, the tran-
sistor switching delay is not decreasing at historical rates, which further decreases
the potential to extract speedup from device scaling. These two device scaling trends
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create a gap between the speedup levels that can be achieved in the future and the
speedup levels our industry has grown accustomed to. We refer to this speedup gap
as the dark silicon gap. Our projections show that this gap imminently increases as
we go further down the path of technology scaling even with tuned optimal multicore
designs. Here, we present our device model that captures the device scaling trends for
future technology generations.

3.1. Model Structure

The device model provides transistor area, power, and frequency scaling factors from
a base technology node (e.g., 45 nm) to future technologies. The area scaling factor
corresponds to the shrinkage in transistor dimensions. The frequency scaling factor
is calculated based on the FO4 inverter delay reduction. The power scaling factor is
computed using the predicted frequency, voltage, and gate capacitance scaling factors
in accordance with the P = αCV2

dd f equation.

3.2. Model Implementation

We build four device models. Two original models, conservative and ITRS, and two
synthetic models derived from the original ones, midpoint and aggressive. The param-
eters used for calculating the power and performance scaling factors are summarized
in Table II.

Original DevMs. The conservative model is based on predictions presented by
Borkar and represents a less optimistic view [Borkar 2010]. The ITRS model uses
projections from the ITRS 2010 technology roadmap [ITRS 2011]. As shown in
Table II, the ITRS roadmap predicts that multi-gate MOSFETs, such as FinFETs, will
supersede planar bulk at 22 nm [ITRS 2011]. The large increase in frequency, 2.2× as
shown in Table II, and substantial reduction in capacitance, 47%, from 32 nm to 22 nm
is the result of this technology change. The ITRS roadmap predicts that by changing
the transistor technology to multi-gate MOSFETs, the device power decreases by 18%,
despite a frequency increase of 2.2×. Based on ITRS projections, the device switching
delay increases from 11 nm to 8 nm, while its power decreases.

Synthetic DevMs. The midpoint model is the middle ground scaling projection be-
tween conservative scaling and the ITRS projection. At each technology node, the
frequency scaling and the power scaling factors are computed as the average of conser-
vative and ITRS factors. For the aggressive model, which is one step more optimistic
than ITRS, the frequency and power scaling factors are computed such that the ITRS
factors are the average of midpoint and aggressive factors. In all the four models, the
energy scaling factor is computed based on the frequency and power factors as the
(power scaling factor) × 1/(frequency scaling factor). The area scaling factor is the
same across all models: a 50% area reduction per process scaling in accordance with
Moore’s Law [Moore 1965].

Figure 2 shows the device area and switching power scaling trends for our four
DevM models across the future technology nodes compared to classical Dennard scal-
ing. As illustrated, even though the device area is scaling according to historical rates,
there is a growing gap between device power and the historical rate of transistor power
reduction. This growing gap is one of the main sources of dark silicon. At 8 nm, the
gap is 2.3× between Dennard scaling and the device switching power projected by the
aggressive model. This gap becomes as large as 7.3× with conservative scaling at
8 nm.
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Table II. Scaling Factors for Conservative, Midpoint, ITRS and Aggressive Projections

Frequency Vdd Capacitance Power Energy Area
Tech Scaling Scaling Scaling Scaling Scaling Scaling
Node Factor Factor Factor Factor Factor Factor

Year (nm) (/45 nm) (/45 nm) (/45 nm) (/45 nm) (/45 nm) (/45 nm)
C

on
se

rv
at

iv
e 2008 45 1.00 1.00 1.00 1.00 1.00 20

2010 32 1.10 0.93 0.75 0.71 0.65 2−1

2012 22 1.19 0.88 0.56 0.52 0.44 2−2

2014 16 1.25 0.86 0.42 0.39 0.31 2−3

2016 11 1.30 0.84 0.32 0.29 0.22 2−4

2018 8 1.34 0.84 0.24 0.22 0.16 2−5

6% frequency increase, 23% power reduction, and 30% energy reduction per node

M
id

p
oi

n
t

– 45 1.00 – – 1.00 1.00 20

– 32 1.10 – – 0.69 0.63 2−1

– 22 1.79 – – 0.53 0.30 2−2

– 16 2.23 – – 0.39 0.17 2−3

– 11 2.74 – – 0.27 0.10 2−4

– 8 2.60 – – 0.17 0.07 2−5

21% frequency increase, 30% power reduction, and 42% energy reduction per node

IT
R

S

2010 45∗ 1.00 1.00 1.00 1.00 1.00 20

2012 32∗ 1.09 0.93 0.70 0.66 0.61 2−1

2015 22† 2.38 0.84 0.33 0.54 0.23 2−2

2018 16† 3.21 0.75 0.21 0.38 0.12 2−3

2021 11† 4.17 0.68 0.13 0.25 0.06 2−4

2024 8† 3.85 0.62 0.08 0.12 0.03 2−5

31% frequency increase, 35% power reduction, and 50% energy reduction per node

A
gg

re
ss

iv
e

– 45 1.00 – – 1.00 1.00 20

– 32 1.11 – – 0.64 0.57 2−1

– 22 2.98 – – 0.51 0.17 2−2

– 16 4.19 – – 0.38 0.09 2−3

– 11 5.61 – – 0.23 0.04 2−4

– 8 5.11 – – 0.07 0.01 2−5

39% frequency increase and 41% power reduction, and 58% energy reduction per node

∗: Extended Planar Bulk Transistors, †:Multi-Gate Transistors

Leakage. We allocate 20% of the chip power budget to leakage power. As shown in
Nose and Sakurai [2000], the transistor threshold voltage can be selected so that the
maximum leakage power is always an acceptable ratio of the chip power budget while
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Fig. 2. Device scaling trends across future technology nodes with four different scaling projections com-
pared to classical Dennard scaling.

Fig. 3. Power/performance design space for 152 real processors (from P54C Pentium to Nehalem-based i7)
fabricated at 600 nm through 45 nm. The design space boundary that comprises the power/performance
optimal points constructs the Pareto frontier.

still meeting power and performance constraints. We also observe that with 10% or
30% leakage power, we do not see significant changes in optimal configurations.

4. CORE MODEL

4.1. Model Structure

We build the technology-scalable core model by populating the area/performance and
power/performance design spaces with the data collected for a set of processors as de-
picted in Figure 3. The core model is the combination of the area/performance Pareto
frontier, A(q), and the power/performance Pareto frontier, P(q), for these two design
spaces. The q is the single-threaded performance of a core. These frontiers capture
the optimal area/performance and power/performance trade-offs for a core while ab-
stracting away specific details of the core. We use the device scaling model to project
the frontiers to future technologies and model performance, area, and power of cores
fabricated at those nodes.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 11, Publication date: August 2012.
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Fig. 4. Single-core (a) power/performance and (b) area/performance design space at 45 nm and the corre-
sponding Pareto frontiers.

4.2. Model Implementation

As Figure 4 depicts, we populate the two design spaces at 45 nm using 20 representa-
tive Intel and AMD processors1 and derive the Pareto frontiers. The curve that bounds
all power(area)/performance points in the design space and minimizes power(area) re-
quired for a given level of performance constructs the Pareto frontier. The polynomials
P(q) and A(q) are the core model. The core performance, q, is the processor’s SPEC-
mark and is collected from the SPEC website [SPEC 2011]. We estimate the core power
budget using the TDP reported in processor datasheets. TDP is the chip power bud-
get, or the amount of power the chip can dissipate without exceeding the transistor
junction temperature. We used die photos of the four microarchitectures, Intel Atom,
Intel Core, AMD Shanghai, and Intel Nehalem, to estimate the core areas (exclud-
ing level 2 and level 3 caches). Since the focus of this work is to study the impact of
technology constraints on logic scaling rather than cache scaling, we derive the Pareto
frontiers using only the portion of power budget and area allocated to the core in each
processor excluding the “uncore” components. To compute the power budget of a sin-
gle core, the power budget allocated to the level 2 and level 3 caches is estimated and
deducted from the chip TDP. In the case of a multicore CPU, the remainder of the
chip power budget is divided by the number of cores, resulting in the power budget
allocated to a single core.

As illustrated in Figure 4, a cubic polynomial, P(q), is fit to the points along the
edge of the power/performance design space and a quadratic polynomial (Pollack’s
rule [Pollack 1999]), A(q), to the points along the edge of the area/performance de-
sign space. We used the least square regression method for curve fitting such that
the frontiers enclose all design points. Figures 4(a) and 4(b) show the 45-nm pro-
cessor points and identify the power/performance and area/performance Pareto fron-
tiers. The power/performance cubic polynomial P(q) function (Figure 4(a)) and the
area/performance quadratic polynomial A(q) (Figure 4(b)) are the core model. The
Intel Atom Z520 with an estimated 1.89 W core TDP represents the lowest power

1Atom Z520, Atom 230, Atom D510, Core 2 Duo T9500, Core 2 Extreme QX9650, Core 2 Quad
Q8400, Opteron 2393SE, Opteron 2381HE, Core 2 Duo E7600, Core 2 Duo E8600, Core 2 Quad Q9650,
Core 2 Quad QX9770, Core 2 Duo T9900, Pentium SU2700, Xeon E5405, Xeon E5205, Xeon X3440,
Xeon E7450, Core i7-965 ExEd.
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Fig. 5. Voltage and frequency scaling on the power/performance Pareto frontiers.

design (lower-left frontier point), and the Nehalem-based Intel Core i7-965 Extreme
Edition with an estimated 31.25 W core TDP represents the highest performing design
(upper-right frontier point). The points along the scaled Pareto frontier are used as
the search space for determining the best core configuration by the multicore-scaling
model.

Decoupling Power/Performance Trade-Off from Area/Performance Trade-Off. Previ-
ous studies on multicore performance modeling [Chakraborty 2008; Cho and Melhem
2008; Chung et al. 2010; Hill and Marty 2008; Lee et al. 2009; Loh 2008; Woo and
Lee 2008] use Pollack’s rule [Pollack 1999] to denote the trade-off between area and
performance. Furthermore, these studies consider the power consumption of a core to
be directly proportional to its area. This assumption makes power an area-dependent
constraint. However, power is a function of not only area, but also supply voltage and
frequency. Since these no longer scale at historical rates, Pollack’s rule is insufficient
for modeling core power. Thus, it is necessary to decouple area and power into two
independent constraints.

Voltage and Frequency Scaling. Our device and core models do not explicitly con-
sider dynamic voltage and frequency scaling; instead, we take an optimistic approach
to account for its best-case impact. When deriving the Pareto frontiers, each proces-
sor data point was assumed to operate at its optimal voltage and frequency setting
(Vddmin, Freqmax). Figure 5 shows the result of voltage/frequency scaling on the de-
sign points along the power/performance frontier. At a fixed Vdd setting, scaling down
the frequency from Freqmax results in a power/performance point inside the optimal
Pareto curve, a suboptimal design point. However, scaling voltage up and operating
at a new (Vdd′

min, Freq′
max) setting results in a different power-performance point that

is still on the optimal frontier. Furthermore, if an application dissipates less than the
power budget, we assume that the voltage and frequency scaling will be utilized to
achieve the highest possible performance with the minimum power increase. This is
possible since voltage and frequency scaling only changes the operating condition in
a Pareto-optimal fashion. Since we investigate all of the points along the frontier to
find the optimal multicore configuration, our study covers multicore designs that in-
troduce heterogeneity to symmetric topologies through dynamic voltage and frequency
scaling.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 11, Publication date: August 2012.
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Table III. CmpM Parameters with Default Values from 45 nm Nehalem

Parameter Description Default Impacted By
N Number of cores 4 Multicore Topology
T Number of threads per core 1 Core Style
freq Core frequency (MHz) 3200 Core Performance
CPIexe Cycles per instruction (zero-latency cache accesses) 1 Core Performance, Application
CL1 L1 cache size per core (KB) 64 Core Style
CL2 L2 cache size per chip (MB) 2 Core Style, Multicore Topology
tL1 L1 access time (cycles) 3 -
tL2 L2 access time (cycles) 20 -
tmem Memory access time (cycles) 426 Core Performance
BWmax Maximum memory bandwidth (GB/s) 200 Technology Node
b Bytes per memory access (B) 64 -
f Fraction of code that can be parallel varies Application
rm Fraction of instructions that are memory accesses varies Application
αL1, βL1 L1 cache miss rate function constants varies Application
αL2, βL2 L2 cache miss rate function constants varies Application

5. MULTICORE MODEL

5.1. Model Structure

We develop a detailed chip-level model (CmpM) that integrates the area and power
frontiers, microarchitectural features, and application behavior, while accounting for
the chip organization (CPU-like or GPU-like) and its topology (symmetric, asymmet-
ric, dynamic, or composed). Guz et al. [2009] proposed a model to consider first-order
impacts of microarchitectural features (cache organization, memory bandwidth, num-
ber of threads per core, etc.) and workload behavior (memory access pattern). To
first order, their model considers stalls due to memory dependences and resource
constraints (bandwidth or functional units). We extend their approach to build our
multicore model. Our extensions incorporate additional application behaviors, mi-
croarchitectural features, and physical constraints, and covers both homogeneous and
heterogeneous multicore topologies.

Using this model, we consider single-threaded cores with large caches to cover
the CPU multicore design space and massively threaded cores with minimal caches
to cover the GPU multicore design space across all four topologies, as described in
Table I. The input parameters to the model, and how, if at all, they are impacted by
the multicore design choices are listed in Table III.

Microarchitectural Features. Multithreaded performance (Perf ) of an either CPU-
like or GPU-like multicore running a fully parallel ( f = 1) and multithreaded applica-
tion is calculated in terms of instructions per second in (1) by multiplying the number
of cores (N) by the core utilization (η) and scaling by the ratio of the processor fre-
quency to CPIexe:

Perf = min
(

N
freq

CPIexe
η,

BWmax

rm × mL1 × mL2 × b

)
. (1)

The CPIexe parameter does not include stalls due to cache accesses, which are con-
sidered separately in the core utilization (η). The core utilization is the fraction of time
that a thread running on the core can keep it busy. It is modeled as a function of the
average time spent waiting for each memory access (t), fraction of instructions that
access the memory (rm), and the CPIexe:

η = min

(
1,

T
1 + t rm

CPIexe

)
. (2)
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Table IV. Number of Cores for Different Multicore Topologies

Topology Number of Cores

Symmetric NSymm(q) = min
(

DIEA REA
A(q) , TDP

P(q)

)

Asymmetric NAsym(qL , qS) = min
(

DIEA REA − A(qL )
A(qS) ,

TDP − P(qL )
P(qS)

)

Dynamic NDynm(qL , qS) = min
(

DIEA REA − A(qL )
A(qS) , TDP

P(qS)

)

Composed NComp(qL , qS) = min
(

DIEA REA
(1 + τ )A(qS) ,

TDP
P(qS)

)

The average time spent waiting for memory accesses (t) is a function of the time to
access the caches (tL1 and tL2), time to visit memory (tmem), and the predicted cache
miss rate (mL1 and mL2):

t = (1 − mL1)tL1 + mL1(1 − mL2)tL2 + mL1mL2tmem (3)

mL1 =
(

CL1

TβL1

)1−αL1

and mL2 =
(

CL2

NTβL2

)1−αL2

. (4)

Multicore Topologies. The multicore model (5) is an extended Amdahl’s Law
[Amdahl 1967] that incorporates the multicore performance (Perf ) calculated from
(1)–(4):

Speedup = 1/
(

f
SParallel

+ 1 − f
SSerial

)
. (5)

The CmpM model (5) measures the multicore speedup with respect to a baseline
multicore (PerfB). That is, the parallel portion of code ( f ) is sped up by SParallel =
PerfP/PerfB and the serial portion of code (1 − f ) is sped up by SSerial = PerfS/PerfB.
The number of cores that fit on the chip is calculated through the equations in
Table IV based on the multicore topology, its area budget (DIEA REA ), its power budget
(TDP), area of each core (A(q)), and power consumption of each core (P(q)). For het-
erogeneous multicores, qS is the single-threaded performance of the small cores and qL
is the single-threaded performance of the large core. The area overhead of supporting
composability is τ , while no power overhead is assumed for composability support.

5.2. Model Implementation

One of the contributions of this work is the incorporation of Pareto frontiers, physical
constraints, real application behavior, and realistic microarchitectural features into
the multicore speedup projections as discussed below.

Application Behavior. The input parameters that characterize an application are
its cache behavior, fraction of instructions that are loads or stores, and fraction of
parallel code. For the PARSEC benchmarks, we obtain this data from two previous
studies [Bhadauria et al. 2009; Bienia et al. 2008]. To obtain the fraction of parallel
code ( f ) for each benchmark, we fit an Amdahl’s Law-based curve to the reported
speedups across different numbers of cores from both studies. This fit shows values of
f between 0.75 and 0.9999 for individual benchmarks.
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Obtaining Frequency and CPIexe from Pareto Frontiers. To incorporate the Pareto-
optimal curves into the CmpM model, we convert the SPECmark scores (q) into an
estimated CPIexe and core frequency. We assume the core frequency scales linearly
with performance, from 1.5 GHz for an Atom core to 3.2 GHz for a Nehalem core.
Each application’s CPIexe is dependent on its instruction mix and use of hardware
optimizations (e.g., functional units and out-of-order processing). Since the measured
CPIexe for each benchmark at each technology node is not available, we use the CmpM
model to generate per benchmark CPIexe estimates for each design point along the
Pareto frontier. With all other model inputs kept constant, we iteratively search for
the CPIexe at each processor design point. We start by assuming that the Nehalem
core has a CPIexe of �. Then, the smallest core, an Atom processor, should have a
CPIexe such that the ratio of its CmpM performance to the Nehalem core’s CmpM
performance is the same as the ratio of their SPECmark scores (q). We assume CPIexe
does not change with technology node, while frequency scales as discussed in Section 4.

Microarchitectural Features. A key component of the detailed model is the set of
input parameters that model the microarchitecture of the cores. For single-thread (ST)
cores, we assume each core has a 64 KB L1 cache, and chips with only ST cores have
an L2 cache that is 30% of the chip area. Many-thread (MT) cores2 have small L1
caches (32 KB for every 8 cores), support multiple hardware contexts (1024 threads
per 8 cores), a thread register file, and no L2 cache. From Atom and Tesla die photos,
we estimate that 8 small MT cores, their shared L1 cache, and their thread register
file can fit in the same area as one Atom processor. We assume that off-chip bandwidth
(BWmax) increases linearly as process technology scales down while the memory access
time is constant.

Composed Multicores. We assume that τ increases from 10% up to 400% depending
on the total area of the composed core and performance of the composed core cannot
exceed performance of a single Nehalem core at 45 nm.

Baselines and Constraints. The CmpM multicore speedup baseline is a quad-
Nehalem multicore that fits in the area and power budgets. The area and power
budgets are derived from the same quad-core Nehalem multicore at 45 nm exclud-
ing the L2 and L3 caches. They are 111 mm2 and 125 W, respectively. The reported
dark silicon projections are for the area budget that is solely allocated to the cores, not
caches and other “uncore” components.

6. COMBINING MODELS

6.1. Device × Core Model

To study core scaling in future technology nodes, we scale the 45-nm Pareto frontiers
to 8 nm by scaling the power and performance of each processor data point using the
projected DevM scaling factors and then re-fitting the Pareto optimal curves at each
technology node. Performance, measured in SPECmark, is assumed to scale linearly
with frequency. This is an optimistic assumption which ignores the effects of memory
latency and bandwidth on the performance. Thus, actual performance through scal-
ing is likely to be lower. Figure 6 shows the scaled power Pareto frontiers with the
conservative, midpoint, ITRS, and aggressive device scaling models. As illustrated in
Figure 6(a), conservative scaling suggests that performance will increase only by 34%,
and power will decrease by 74% as a core scales from 45 nm to 8 nm. Figure 6(b)

2In the GPU projections, each core is a shader processor (SP), a group of which can form a stream multipro-
cessor (SM).
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Fig. 6. Combining DevM and CorM results in scaled core models for future technology nodes by providing
the scaled power/performance and area/performance Pareto frontiers.

shows that the core performance from 45 nm through 8 nm increases 2.6× and the
core power decreases by 83% with midpoint scaling. Based on the optimistic ITRS
predictions, however, scaling a microarchitecture (core) from 45 nm to 8 nm will result
in a 3.9× performance improvement and an 88% reduction in its power consumption
(Figure 6(c)). As shown in Figures 6(d), with aggressive scaling the single-threaded
performance at 8 nm increases by a factor of 5.1× while its power dissipation decreases
by 93%. The current trends of frequency scaling in microprocessor design is far from
the predictions of ITRS. We believe that based on the current trends, without any
disruptive innovations in transistor design, such frequency improvements may not be
possible.

6.2. Device × Core × Multicore Model

All three models are combined to produce final projections for optimal multicore
speedup, optimal number of cores, and amount of dark silicon. To determine the best
multicore configuration at each technology node, we sweep the design points along the
scaled area/performance and power/performance Pareto frontiers (DevM × CorM) as
these points represent the most efficient designs. First, we uniformly quantize the
scaled Pareto frontier to 100 points. At each technology node, for each core design on
the scaled frontiers, we construct a multicore consisting of one such core. For a sym-
metric multicore, we iteratively add identical cores one by one until the area or power
budget is hit, or performance improvement is limited (less than 10% performance gain
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Fig. 7. Speedup projections for CPU-like and GPU-like symmetric multicore topology across technology
generations with ITRS scaling.

for doubling the number cores). We sweep the frontier and construct a symmetric mul-
ticore for each processor design point. From this set of symmetric multicores, we pick
the multicore with the best speedup as the optimal symmetric multicore for that tech-
nology node. The procedure is similar for other topologies. This procedure is performed
separately for CPU-like and GPU-like organizations. The amount of dark silicon is the
difference between the area occupied by cores for the optimal multicore and the area
budget designated for the cores.

7. SCALING AND FUTURE MULTICORES

We apply the combined models to study the future of multicore designs and their per-
formance limiting factors. The results from this study provide detailed analysis of
multicore behavior for future technologies considering 12 real applications from the
PARSEC suite. Details for all applications and topologies are presented in Figure 17.
Unless otherwise stated, the model is used to find the optimal multicore configuration
with the highest possible speedup for each individual benchmark.

7.1. Speedup Projections

Figure 7 shows the geometric mean of speedup and the best-case speedup among the
benchmarks for a symmetric topology using the optimistic ITRS scaling. The symmet-
ric topology achieves the lower bound on speedups. With speedups that are no more
than 10% higher, the dynamic and composed topologies achieve the upper-bound. The
results are presented for both CPU-like and GPU-like multicore organizations. To
conduct a fair comparison between different design points, all speedup results are nor-
malized to the performance of a quad-core Nehalem multicore at 45 nm that fits in the
same power and area budget. The results over five technology generations with the
four device scaling projections are summarized as follows.

Conservative Midpoint ITRS Aggressive
Topology CPU GPU CPU GPU CPU GPU CPU GPU

Geomean Speedup Symmetric 3.4× 2.4× 5.4× 2.4× 7.7× 2.7× 10.2× 2.7×
Geomean Speedup Asymmetric 3.5× 2.4× 5.5× 2.4× 7.9× 2.7× 10.3× 2.7×
Geomean Speedup Dynamic 3.5× 2.4× 5.5× 2.4× 7.9× 2.7× 10.3× 2.7×
Geomean Speedup Composed 3.7× 2.3× 5.1× 2.3× 6.2× 2.5× 7.2× 2.5×

Maximum Speedup All 10.9× 10.1× 27.5× 10.1× 46.6× 11.2× 91.7× 11.2×

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 11, Publication date: August 2012.



11:16 H. Esmaeilzadeh et al.

Fig. 8. Speedup projections for dynamic CPU-like multicore topologies with four transistor scaling models.

Figure 8 shows the geometric mean speedup projections across the technology
nodes for all the device scaling models. As depicted, improvements in process tech-
nology have a direct impact in bridging the dark silicon speedup gap. We believe
that reality will be closer to the midpoint projections that leaves a large dark sili-
con speedup gap. However, a disruptive breakthrough in transistor fabrication that
matches the aggressive scaling predictions could improve potential multicore scaling
significantly.

Figure 9 summarizes all of the speedup projections in a single scatter plot for con-
servative and ITRS scaling models. For every benchmark at each technology node,
we plot the speedup of eight possible multicore configurations (CPU-like, GPU-like)
× (symmetric, asymmetric, dynamic, composed). The solid line in Figure 9 shows the
exponential performance scaling—doubling performance every generation.

With optimal multicore configurations for each individual application, at 8 nm, only 3.7× (con-
servative scaling), 5.5× (midpoint scaling), 7.9× (ITRS scaling), or 10.3× (aggressive scaling)
geometric mean speedup is possible.

Highly parallel workloads with a degree of parallelism higher than 99% will continue to benefit
from multicore scaling.

At 8 nm, the geometric mean speedup for heterogeneous dynamic and composed topologies is
only 10% higher than the geometric mean speedup for symmetric topologies.

Improvements in transistor process technology are directly reflected as multicore speedup; how-
ever, to bridge the dark silicon speedup gap even a disruptive breakthrough that matches our
aggressive scaling model is not enough.

7.2. Core Count Projections

Figure 10 illustrates the geometric mean number of cores across the 12 PARSEC
benchmarks for a symmetric topology with ITRS scaling when each individual bench-
mark has its optimum number of cores. Different applications saturate performance
improvements at different core counts, but the geometric mean number of cores is less
than 64. We consider as an ideal configuration the chip configuration that provides
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Fig. 9. Speedup across process technology nodes across all organizations and topologies with PARSEC
benchmarks.

Fig. 10. Geometric mean number of cores across 12 PARSEC benchmarks for symmetric topology with ITRS
scaling.

the best speedups for all applications. Figure 11 shows the number of cores (solid line)
for the ideal CPU-like dynamic multicore configuration across technology generations,
since dynamic configurations performed best. The dashed line illustrates the number
of cores required to achieve 90% of the ideal configuration’s geometric mean speedup
across PARSEC benchmarks. As depicted, with ITRS scaling, the ideal configuration
integrates 442 cores at 8 nm; however, 35 cores reach the 90% of the speedup achiev-
able by 442 cores. With conservative scaling, the 90% speedup core count is 20 at
8 nm.

For the PARSEC benchmarks that we studied, the typical number of cores for individual bench-
marks is less than 64 for CPUs and less than 256 SP cores for GPUs with both conservative and
ITRS scaling.

Due to limited parallelism in the PARSEC benchmark suite, even with novel heterogeneous
topologies and optimistic ITRS scaling, integrating more than 35 cores improves performance
only slightly for CPU-like topologies.
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Fig. 11. Number of cores for the ideal CPU-like dynamic multicore configurations and the number of cores
delivering 90% of the speedup achievable by the ideal configurations across the PARSEC benchmarks.

Fig. 12. Percentage of dark silicon (geometric
mean across all 12 PARSEC benchmarks) for sym-
metric topology and ITRS scaling.

Fig. 13. Dark silicon projections across technol-
ogy generation for dynamic CPU-like multicores
with the four device scaling models.

The optimal number of cores projected by our study seems small compared to chips
such as the NVIDIA Fermi, which has 512 cores at 45 nm. There are two reasons
for this discrepancy. First, in our study we are optimizing for a fixed power budget,
whereas with real GPUs the power has been slightly increasing. Second, our study op-
timizes core count and multicore configuration for general purpose workloads similar
to the PARSEC suite. We assume Fermi is optimized for graphics rendering. When we
applied our methodology to a graphics kernel (ray tracing) in an asymmetric topology,
we obtained higher speedups and an optimal core count of 4864 at 8 nm, with 8% dark
silicon.

7.3. Dark Silicon Projections

Figure 13 illustrates the dark silicon projections for dynamic CPU multicore topol-
ogy with the four transistor scaling models. As depicted, the midpoint scaling almost
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matches the ITRS projections and aggressive scaling lowers the portion of dark silicon.
However, as shown in Figure 2, even with aggressive scaling, the energy efficiency
of transistors is significantly below the ideal Dennard scaling which enables Moore’s
Law. This significant gap between the ideal transistor scaling prevents even huge im-
provements in process technology from bridging the dark silicon underutilization gap.
Microarchitectural innovations that can efficiently trade area for energy are vital to
tackle the dark silicon problem.

Figure 12 depicts the geometric mean percentage of dark silicon across the PAR-
SEC benchmarks for symmetric multicores with ITRS scaling. In these projections,
we optimistically use the core counts that achieve the highest speedup for individual
benchmarks. The trend is similar for other topologies.

With conservative scaling, dark silicon dominates in 2016 for CPU-like and in 2012 for GPU-like
multicores. With ITRS scaling, dark silicon dominates in 2021 for CPU-like multicores and in
2015 for GPU-like multicores.

With ITRS projections, at 22 nm (2012) 21% of the chip will be dark and at 8 nm, over 50% of
the chip cannot be utilized.

Mere improvements in process technology even as significant as aggressive scaling projections
cannot bridge the dark silicon underutilization gap. Microarchitecture innovations are vital to
justify continuous scaling.

7.4. Bridging the Dark Silicon Gap

Our analysis thus far examined “typical” configurations and showed poor scalability
for the multicore approach. A natural question is, can simple configuration changes
(percentage cache area, memory bandwidth, etc.) provide significant benefits? We
elaborate on three representative studies of simple changes (L2 cache size, memory
bandwidth, and SMT) below. Further, to understand whether parallelism or the power
budget is the primary source of the dark silicon speedup gap, we vary each of these
factors in two experiments at 8 nm. Our model is flexible enough to perform these
types of studies.

L2 Cache Area. Figure 14(a) shows the optimal speedup at 45 nm as the amount of
a symmetric CPU’s chip area devoted to L2 cache varies from 0% to 100%. In this study
we ignore any increase in L2 cache power or increase in L2 cache access latency. Across
the PARSEC benchmarks, the optimal percentage of chip devoted to cache varies from
20% to 50% depending on benchmark memory access characteristics. Compared to a
30% cache area, using optimal cache area only improves performance by at most 20%
across all benchmarks.

Memory Bandwidth. Figure 14(b) illustrates the sensitivity of PARSEC perfor-
mance to the available memory bandwidth for symmetric GPU multicores at 45 nm.
As the memory bandwidth increases, the speedup improves as the bandwidth can keep
more threads fed with data; however, the increases are limited by power and/or par-
allelism and in 10 out of 12 benchmarks speedups do not increase by more than 2×
compared to the baseline, 200 GB/s.

SMT. To Simplify the discussion, we did not consider SMT support for the proces-
sors (cores) in the CPU multicore organization. SMT support can improve the power
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Fig. 14. Impact of L2 size and memory bandwidth on speedup at 45 nm.

Fig. 15. Impact of application parallelism and power budget on speedup at 8 nm.

efficiency of the cores for parallel workloads to some extent. We studied 2-way, 4-way,
and 8-way SMT with no area or energy penalty, and observed that speedup improves
with 2-way SMT by 1.5× in the best case and decreases as much as 0.6× in the worst
case due to increased cache contention; the range for 8-way SMT is 0.3–2.5×.

Application Parallelism. First, we keep the power budget constant (our default
budget is 125 W), and vary the level of parallelism in the PARSEC applications from
0.75 to 0.99, assuming programmer effort can realize this improvement. We see per-
formance improves slowly as the parallelism level increases, with most benchmarks
reaching a speedup of about only 15× at 99% parallelism (Figure 15). Provided that the
power budget is the only limiting factor, typical upper-bound ITRS-scaling speedups
would still be limited to 15×. With conservative scaling, this best-case speedup is
limited to 6.3×.
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Table V. Effect of Assumptions on CmpM Accuracy

Impact on Impact on
Assumption CPU Speed GPU Speed

μ
ar

ch

Memory Contention: 0 ↑ ⇑
Interconnection Network Latency: 0 ⇑ ⇑
Thread Swap Time: 0 ↑ ↑

A
pp

li
ca

ti
on Cache Hit Rate Function ↑ or ↓ ↑ or ↓

Thread Synch & Communication: 0 ↑ ⇑
Thread Data Sharing: 0 ↓ —

Workload Type: Homogeneous ↑ ↑
Assumptions lead to ↑ (slightly higher), ⇑ (higher) or ↓ (slightly lower)
predicted speedups (or have no effect (—)).

Power-Budget/Lower-Power Cores. For the second experiment, we keep each appli-
cation’s parallelism at its real level and vary the power budget from 50 W to 500 W.
Eight of 12 benchmarks show no more than 10× speedup even with a practically un-
limited power budget. That is, increasing core counts beyond a certain point does not
improve performance due to the limited parallelism in the applications and Amdahl’s
Law. Only four benchmarks have sufficient parallelism to even hypothetically sustain
Moore’s Law level speedups.

The level of parallelism in PARSEC applications is the primary contributor to the dark silicon
speedup gap. However, in realistic settings the dark silicon resulting from power constraints
limits the achievable speedup.

8. MODEL ASSUMPTIONS, VALIDATION, AND LIMITATIONS

We elaborate on the assumptions of the model and through validation against empiri-
cal results demonstrate that they are carefully considered and consistently optimistic
with respect to the multicore speedup projections. In addition, our modeling includes
certain limitations, which we argue they do not significantly change the results.

8.1. Model Assumptions

The CmpM model allows us to estimate the first-order impact of caching, parallelism,
and threading under several key assumptions. Table V qualitatively describes the
impact of these assumptions. The model optimistically assumes that the workload is
homogeneous, work is infinitely parallel during parallel sections of code, and no thread
synchronization, operating system serialization, or swapping occurs. We also assume
memory accesses never stall due to a previous access. Each of these assumptions
results in over-prediction of multicore performance, making the model and hence pro-
jected speedups optimistic. Cache behaviors may lead to over- or under-prediction. The
model assumes that each thread only sees its own slice of cache and thus the model
may over or underestimate the hit rate. However, comparing the model’s output to the
published empirical results confirms that it only over-predicts multicore performance.

8.2. Model Validation

To validate the CmpM model, we compare the speedup projections from the model to
measurement and simulation results for existing CPU and GPU multicores. For the
CPU case, we compare the model’s speedup predictions to speedup measurements for
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Fig. 16. CmpM model validation.

a quad-Pentium 4 multicore [Bhadauria et al. 2009]. The model is configured to match
this real multicore. We validate GPU speedup projections by comparing the model’s
output simulation results from GPGPUSim [Bakhoda et al. 2009]. Both model and
simulator compare speedups of a 224-core GPU over a 32-core GPU. We use GPG-
PUSim’s 12 CUDA benchmarks since GPU implementations of PARSEC are not avail-
able. Figure 16(a), which includes both CPU and GPU data, shows that the model
is optimistic and over predicts the speedups. CmpM underpredicts speedups for two
benchmarks for which the simulation results show a speedup of greater than 7× , the
increase in number of cores.

To strongly advance our GPU claim, we also need to prove the model’s raw perfor-
mance projection is accurate or optimistic. As depicted in Figure 16(b), the model’s
GPU performance projection is validated by comparing its output to the results from
a real system, NVIDIA 8600 GTS, using the data from Bakhoda et al. [2009]. Except
for a known anomaly that also occurs in GPGPUsim, CmpM consistently over-predicts
raw performance.

Furthermore, using our model, we find 4× geometric-mean and 12× maximum
speedup for PARSEC benchmarks on Tesla compared to a quad-core Nehalem. While
our results are impressively close to Intel’s empirical measurements using similar
benchmarks [Lee et al. 2010], the match in the model’s maximum speedup predic-
tion (12× vs 11× in the Intel study) is an anomaly. Our model does not account for
specialized compute units, which contribute to the speedup in Lee et al. [2010].

8.3. Model Limitations

Different Workloads. Workloads with significantly different behavior than the
workloads we studied could result in different findings.

Other Types of Cores. We do not consider embedded ARM or Tilera cores in this
work because they are designed for different application domains and their SPECmark
scores are not available for a meaningful comparison.

Power Impact of Uncore. We ignore the power impact of uncore components such
as the memory subsystem. There is consensus that the number of these components
will increase and hence they will further eat into the power budget, reducing speedups.
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Fig. 17. Optimal number of cores, speedup over quad-Nehalem at 45 nm, and percentage dark silicon under
ITRS scaling projections.

GPU Methodology. Our GPU methodology may over-estimate the GPU power bud-
get, so we investigated the impact of 10%–50% improved energy efficiency for GPUs
and found that total chip speedup and percentage of dark silicon were not impacted.

We acknowledge that we make a number of assumptions in this work to build a
useful model. Questions may still linger on the model’s accuracy and whether its
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assumptions contribute to the performance projections that fall well below the ideal
32×. First, in all instances, we selected parameter values that would be favorable
towards multicore performance. Second, our validation against real and simulated
systems shows the model always over-predicts multicore performance.

9. RELATED WORK

Hill and Marty [2008] extend Amdahl’s Law to model multicore speedup with symmet-
ric, asymmetric, and dynamic topologies and conclude dynamic multicores are supe-
rior. Several extensions to the Hill and Marty model have been developed for modeling
“uncore” components (e.g., interconnection network and last level cache), [Loh 2008],
computing core configuration optimal for energy [Cho and Melhem 2008; Lee et al.
2009], and leakage power [Woo and Lee 2008]. All these model uses area as the pri-
mary constraint and model single-core area/performance tradeoff using Pollack’s rule
(Performance ∝ √

Area [Pollack 1999]) without considering technology trends.
Azizi et al. [2010] derive the single-core energy/performance trade-off as Pareto fron-

tiers using architecture-level statistical models combined with circuit-level energy-
performance trade-off functions. For modeling single-core power/performance and
area/performance trade-offs, our core model derives two separate Pareto frontiers from
empirical data. Further, we project these trade-off functions to the future technol-
ogy nodes using our device model. Esmaeilzadeh et al. [2011] perform a power/energy
Pareto efficiency analysis at 45 nm using total chip power measurements in the con-
text of a retrospective workload and microarchitecture analysis. In contrast to the total
chip power measurements for specific workloads, we use the power and area budget
allocated to a single-core to derive the Pareto frontiers and combine those with our de-
vice and chip-level models to study the future of multicore design and the implications
of technology scaling.

Chakraborty [2008] considers device-scaling and estimates a simultaneous activity
factor for technology nodes down to 32 nm. Hempstead et al. [2009] introduce a vari-
ant of Amdahl’s Law to estimate the amount of specialization required to maintain
1.5× performance growth per year, assuming completely parallelizable code. Chung
et al. [2010] study unconventional cores including custom logic, FPGAs, or GPUs in
heterogeneous single-chip design. They rely on Pollack’s rule for the area/performance
and power/performance tradeoffs. Using ITRS projections, they report on the potential
for unconventional cores considering parallel kernels. Hardavellas et al. [2011] fore-
cast the limits of multicore scaling and the emergence of dark silicon in servers with
workloads that have an inherent abundance of parallelism. Using ITRS projections,
Venkatesh et al. [2010] estimate technology-imposed utilization limits and motivate
energy-efficient and application-specific core designs.

Previous work largely abstracts away processor organization and application de-
tails. This study provides a comprehensive model that considers the implications of
process technology scaling, decouples power/area constraints, uses real measurements
to model single-core design trade-offs, and exhaustively considers multicore organiza-
tions, microarchitectural features, and real applications and their behavior.

10. CONCLUSIONS AND FUTURE DIRECTIONS

For decades, Dennard scaling permitted more transistors, faster transistors, and more
energy efficient transistors with each new process node, justifying the enormous costs
required to develop each new process node. Dennard scaling’s failure led industry to
race down the multicore path, which for some time permitted performance scaling for
parallel and multitasked workloads, permitting the economics of process scaling to
hold. A key question for our community is whether scaling multicores will provide
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the performance and value needed to scale down many more technology generations.
Are we in a long-term multicore “era,” or will industry need to move in different,
perhaps radical, directions to justify the cost of scaling? This article models an up-
per bound on parallel application performance available from multicore and CMOS
scaling–assuming no major disruptions in process scaling or core efficiency. Using a
constant area and power budget, this study showed that the space of known multicore
designs (CPU, GPU, their hybrids) or novel heterogeneous topologies (e.g., dynamic
or composable) falls far short of the historical performance gains our industry is ac-
customed to. Even with aggressive ITRS scaling projections, scaling cores achieves
a geometric mean 7.9× speedup through 2024 at 8 nm. The article’s findings and
methodology are both significant and indicate that without process breakthroughs, di-
rections beyond multicore are needed to provide performance scaling.

The Glass Half-Empty. A pessimistic interpretation of this study is that the perfor-
mance improvements we have grown accustomed to over the past 30 years are unlikely
to continue with multicore scaling as the primary driver. The transition from multi-
core to a new approach is likely to be more disruptive than the transition to multicore,
and to sustain the current cadence of Moore’s Law, must occur in only a few years,
much shorter than the traditional academic time frame for research and technology
transfer. Major architecture breakthroughs in “alternative” directions such as neu-
romorphic computing, quantum computing, or bio-integration will require even more
time to enter industry product cycle. Furthermore, while a slowing of Moore’s Law will
obviously not be fatal, it has significant economic implications for the semiconductor
industry.

The Glass Half-Full. The study shows that performance speedup is left from mul-
ticore scaling. If energy efficiency breakthroughs are made on supply voltage and
process scaling, the performance improvement potential is high for applications with
very high degrees of parallelism.

Rethinking Multicore’s Long-Term Potential. We hope that this article’s quantita-
tive findings trigger some analyses in both academia and industry on the long-term
potential of the multicore strategy. Academia is now making a major investment in
research focusing on multicore and its related problems of expressing and manag-
ing parallelism. Research projects assuming hundreds or thousands of capable cores
should consider this model and the power requirements under various scaling projec-
tions before assuming that the cores will inevitably arrive. The paradigm shift towards
multicores that started in the high-performance general purpose market has already
percolated to mobile and embedded markets. The qualitative trends we predict and
our modeling methodology hold true for all markets even though our study considers
the high-end desktop market. The results from this study may help break industry’s
current widespread consensus that multicore scaling is the viable forward path.

Model Points to Opportunities. Our study is based on a model that takes into ac-
count properties of devices, processor core, multicore organization and topology. Thus
the model inherently provides the places to focus on for innovation. To surpass the
dark silicon performance barrier highlighted by our work, designers must develop sys-
tems that use significantly more energy-efficient techniques. Some examples include
device abstractions beyond digital logic (error-prone devices); processing paradigms
beyond superscalar, SIMD, and SIMT; and program semantic abstractions allowing
probabilistic and approximate computation. The results show that radical departures
are needed and the model shows quantitative ways to measure the impact of such
techniques.
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A Case for Microarchitecture Innovation. Our study shows that fundamental pro-
cessing limitations emanate from the processor core. Clearly, architectures that move
well past the power/performance Pareto-optimal frontier of today’s designs are neces-
sary to bridge the dark silicon gap and utilize transistor integration capacity. Hence,
improvements to the core’s efficiency will have impact on performance improvement
and will enable technology scaling even though the core consumes only 20% of the
power budget for an entire laptop, smartphone, tablet, etc. We believe this study will
revitalize and trigger microarchitecture innovations, making the case for their urgency
and their potential impact. Our article serves as a quantitative and resounding affir-
mative answer to a recent ISCA panel questioning the relevance of microarchitecture
research.

A Case for Specialization. There is emerging consensus that specialization is a
promising alternative to energy-efficiently utilize transistors to improve performance.
Our study serves as a quantitative motivation on the urgency of such work and its
potential impact. Further, our study shows quantitatively the levels of energy im-
provement that must be delivered by specialization techniques.

A Case for Complementing the Core. Our study also shows that when performance
becomes limited, techniques that occasionally use parts of the chip to deliver outcomes
orthogonal to performance are ways to sustain the economics of the industry. How-
ever, techniques that focus on using the device integration capacity for improving se-
curity, programmer productivity, software maintainability, etc., must consider energy-
efficiency as a primary factor.

Contributions. Our work makes two key contributions: (1) projecting multicore
speedup limits and quantifying the dark silicon effect and (2) providing a novel and
extendible model that integrates device scaling trends, core design trade-offs, and mul-
ticore configurations. While abstracting away many details, the model can find opti-
mal configurations and project performance for CPU- and GPU-style multicores while
taking into account microarchitectural features and high-level application properties.
We make our model publicly available at http://research.cs.wisc.edu/vertical/
DarkSilicon. We believe this study makes the case for innovation’s urgency and its
potential for high impact while providing a model that can be adopted as a tool by
researchers and engineers to study limits of their solutions.
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