Multicore Model from Abstract Single Core Inputs
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Abstract—This paper describes a first order multicore model to project a tighter upper bound on performance than previous Amdahl’s
Law based approaches. The speedup over a known baseline is a function of the core performance, microarchitectural features,
application parameters, chip organization, and multicore topology. The model is flexible enough to consider both CPU and GPU like
organizations as well as modern topologies from symmetric to aggressive heterogeneous (asymmetric, dynamic, and fused) designs.
This extended model incorporates first order effects—exposing more bottlenecks than previous applications of Amdahl's Law—while
remaining simple and flexible enough to be adapted for many applications.

Index Terms—Performance modeling, multicores, parallelism

1 INTRODUCTION

Amdahl’s Law [1] is extensively used to generate upper-bound
multicore speedup projections. Hill and Marty’s extensions
study a range of multicore topologies [7]. They model the
trade-off between core resources (r) and core performance as
perf(r) = +/r (Pollack’s Rule [10]). Performance of various
multicore topologies is then a function of r, perf(r), and the
fraction of code that is parallelizable. We tighten their upper-
bound on multicore performance using real core measurements
in place of the perf(r) function and consider the impact of
additional architectural and application characteristics.

To improve multicore performance projection accuracy while
maintaining an abstract, easily implemented model, we de-
velop a first order model using architectural and application
input data. We model a heterogeneous chip with a mix of
CPU- and GPU-like cores with varying performance. The chip’s
topology may be symmetric, asymmetric, dynamic, or even
dynamically compose cores together (fused). This flexibility
and wide design space coverage permits projections for a
diverse and comprehensive set of multicores.

The range of low to high performing cores is represented
using simple performance/resource constraint trade-offs (the
trade-off function). These model inputs can be derived from a
diverse set of input measures for performance (e.g., SPECmark,
CoreMark) and resource constraints (e.g., area, power). They
are then used to predict performance in a diverse set of
applications with only a few additional application-specific
parameters. The trade-off function may be concrete points
from measured data, a function based on curve fitting to
known designs, or an abstract function of expected trade-
offs. Examples of the input trade-offs using curve fitting are
Pareto frontiers like those presented in Azizi et al. [2] and
Esmaeilzadeh et al. [4], and more abstract trade-off functions
like Pollack’s Rule [10].

Elements of this model were proposed in our previous
work [4], wherein the model was intricately tied to empirically
measured Pareto-frontier curves for Power/Performance and
Area/Performance using SPEC scores. While related, this work
makes the following contributions of its own. First, and most
importantly, in this work, we separate out this interdependency
to SPEC and Pareto frontiers and present a stand-alone model
that can be used for performance projection given specific
program and architecture inputs, completely obviating the
need for SPEC scores — as part of this, we also increase its

flexibility in modeling different microarchitectures. Specifically,
we present a complete model consisting of five components:
core performance, memory bandwidth performance, chip con-
straints, multicore performance, and overall speedup. Second,
we refine the model’s cache handling by allowing either a hit-
rate number or an analytical model input of its own. Third,
we present a detailed validation to show the accuracy of the
model and its flexibility in handling microarchitecture effects.
We have expanded the validation to include a microarchi-
tectural study for the CPU validation and a more detailed
study of the number of cores and the impact of memory
bandwidth for the GPU validation, as well as a comparison
against Amdahls Law projections. An implementation of this
model with a web-based front-end has been publicly released
at http://research.cs.wisc.edu/vertical /DarkSilicon.

Below and in Figure 1, we summarize the model compo-
nents’ intuition, simple inputs, and useful outputs.
Core Performance: This component finds the expected perfor-
mance of a single core. The impact of core microarchitecture,
CPU-like or GPU-like organization, and memory access latency
are all incorporated here. The inputs include organization,
CP], frequency, cache hierarchy, and cache miss rates. CPI and
frequency are functions of the trade-off function’s performance.
Memory Bandwidth Performance: This component finds the
maximum performance given memory bandwidth constraints
by finding the number of memory transactions per instruction.
The inputs are the trade-off function design point, application
memory use, and maximum memory bandwidth.
Chip and Topology Constraints: This component finds the
number of each type of core to include on the chip, given
the multicore topology, organization, trade-off function, and
resource constraints. Four multicore topologies are described
in detail in Table 1. Each core is described as a combination of
the trade-off function design point and thread style.
Multicore Performance: This component finds the expected se-
rial and parallel performance for an application on a multicore
chip with a particular topology. Inputs include outputs from
the previous three models: core performance, number of cores
of each type, and the memory bandwidth performance. We
assume the first order bottlenecks for chip performance are
core performance and memory bandwidth, and compute the
total serial and parallel performance using these constraints.
Multicore Speedup: This component accumulates the results
with the fractions of parallel and serial code into a single
speedup projection using an Amdahl’s Law based approach.
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Fig. 1. Model component overview. Shaded boxes are key model components and watermarked boxes are inputs.

TABLE 1
Multicore Topology Descriptions
(a) CPU: Single-Threaded (ST') Cores

Topology |  Serial Mode | Parallel Mode
Symmetric | 1 Small ST Core N Small ST Cores
Asymmetric| 1 Large ST Core| 1 Large ST & N Small ST Cores
Dynamic 1 Large ST Core N Small ST Cores

Fused 1 Large ST Core N Small ST Cores

(b) GPU: Multi-Threaded (MT) and ST Cores

Topology | Serial Mode | Parallel Mode
Symmetric | 1 MT Core Thread N Small MT Cores
Asymmetric| 1 Large ST Core | 1 Large ST & N Small MT Cores
Dynamic 1 Large ST Core N Small MT Cores

Fused 1 Large ST Core N Small MT Cores

2 MoODEL DESCRIPTION

This section describes in detail the model’s five components.
Building on Guz et al.’s model for an idealized symmetric
multicore with a perfectly parallelized workload (Equations 1-4
below) [6] and Hill et al.’s heterogeneous multicore extensions
to Amdahl’s Law using abstract inputs [1], [7], we use real core
and multicore parameters and add additional hardware details
to find a tighter upper-bound on multicore performance. The
simple inputs listed in Table 2 are easily measured, derived
from known results, or even based on intuition.

Each component is described by first outlining how it is
modeled and then discussing any derived model inputs. This
approach highlights our novel incorporation of real application
behavior and realistic microarchitectural features.

2.1 Core Performance
Single core performance (Pc(qq,:,T)) is calculated in terms
of instructions per second in Equation 1 by scaling the core
utilization (n) by the ratio of the processor frequency to CPleg.:
Pc(qa,m, T) =n X freq/ CPlege (1)
The CPI.;. parameter does not include stalls due to cache
accesses, which are considered separately in the core utilization
(n). The core utilization is the fraction of time that threads
running on the core can keep it busy. The maximum number of
threads per core is a key component of the core style: CPU-like
cores are single-threaded (ST) and GPU-like cores are many
threaded (e.g., 1024 threads per 8 cores). Topologies may have
a mix of large (d = L) and small (d = S) cores. Core utilization
is modeled as a function of the average time (cycles) spent
waiting for each load or store (t), fraction of instructions that
are loads or stores (7;5), and the CPI.z.:

=min | 1 T
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TABLE 2

Model Input Parameters
Input Description
qd,th Core performance (e.g., SPECmark, d: S/L, th: ST/MT)
R(qq,tn) Core resource cost (area, power) from trade-off func
freq Core frequency (MHz) from computation model
CPlege Cycles per inst (zero-latency cache) from comp model
f Fraction of code that can be parallelized
T Number of threads per core (CPU or GPU style)
Tls Fraction of instructions that are loads or stores
myq L1 cache miss rate (from cache model or measured)
mre L2 cache miss rate (from cache model or measured)
tri L1 cache access time (cycles)
tre L2 cache access time (cycles)
tmem Memory access time (cycles)
BWmaz Maximum memory bandwidth (GB/s)
b Bytes per memory access (B)

We assume two levels of cache and an off-chip memory that
contains all application data. The average time spent waiting
for loads and stores is a function of the time to access the caches
(trs and tr2), time to visit memory (tmem), and the predicted
cache miss rate (mr; and mpz):

®)
Although a cache miss model could be inserted here (e.g., [9]),
we assume the miss rates are known here. Changes in miss
rates due to increasing number of threads per cache should
be reflected in the inputs. We assume the number of cycles
per cache access is constant as the frequency changes, while
memory latency (in cycles) increases linearly with frequency
increases. Note that Fermi style GPUs could be modeled using
this cache latency model and cache miss rate inputs.
Derived Inputs To incorporate known single-threaded perfor-
mance/resource trade-offs into the model, we convert single-
threaded performance into an estimated core frequency and
per-application CPl... This novel approach uses generic
single-threaded performance results (e.g. SPECmark scores) to
derive parameters for specific multi-threaded applications. This
works because, assuming comparable memory systems, the
key performance bottlenecks are the processor frequency (freq)
and microarchitecture (summarized by CPI.;.). The approach
finds the processor frequency and microarchitecture impact
based only on the known single-threaded performance and
the frequency of the highest and lowest performing processor,
so it can be applied to abstract design points where only the
performance/resource trade-offs are known.
freq: To find each core’s frequency, we assume frequency scales
linearly with performance, from the frequency of the lowest
performing point to the that of the highest performing point.
CPI...: Each application’s CPI.,. is dependent on its instruc-

t=1—mps)trs +mri(1 —mr2)tre + moimretmem



tion mix and use of hardware optimizations (e.g., functional
units and out-of-order processing). Since the measured CPley.
for each benchmark is not available, the core model is used
to generate per benchmark CPIc,.. estimates for each design
point. With all other model inputs kept constant, the approach
iteratively searches for the CPl... at each processor design
point. The initial assumption is that the highest performing
core has a CPlcye of £. The smallest core should have a CPleg.
such that the ratio of its performance to the highest performing
core’s performance is the same as the ratio of their measured
scores. Since the performance increase between any two points
should be the same using either the measured performance
or model, the same ratio relationship is used to estimate a
per benchmark CPI.,. for each processor design point. This
flexible approach uses the measured performance to generate
reasonable performance model inputs at each design point.

2.2 Memory Bandwidth Performance
The maximum performance possible given off-chip bandwidth
constraints (Pp(qq, ), in instructions per second) is the ratio
of the maximum bandwidth to the average number of bytes of
data required per operation:
Pp(qa,m) = EW e @)
’ bXrisXmrLs X mrg

This is from Guz et al.’s model; previous bandwidth saturation
work includes a learning model by Suleman et al. [?].

2.3 Multicore Topology and Chip Constraints

The number of cores, N, that fit in the chip’s resource budget is
dependent on the types of cores used, the uncore components
included (e.g., a second level of cache), and the chip topology.
The type of cores used (gq,:) affects the resources required
based on the known performance/resource constraint trade-off
(R(gd,+)). Examples of how to compute N for area constrained
chips are in Hill and Marty [7] and examples for area and
power constrained chips are in Esmaeilzadeh et al. [4].
Asymmetric, dynamic, and fused multicore topologies are
similar at the performance level, but significantly different
at the resource constraint level. Asymmetric cores have one
large core and multiple smaller cores, all of which always
consume power. For power-constrained chips, we study the
dynamic core; the large core is disabled during parallel code
segments and the smaller cores are disabled during serial code
segments. For power- and area-constrained chips, we study
the fused core, where the smaller cores are fused together to
form one larger core during serial execution. Although the
fused topology primarily affects the resource budget, it may
have performance impacts: fused cores may not perform as
well as similarly sized serial cores in asymmetric or dynamic
topologies. From Atom and Tesla die photo inspections, we
estimate that 8 small MT cores, their shared L1 cache, and
their thread register file can fit in the same area as an Atom
processor and assume a similar power correspondence.

2.4 Multicore Performance

This model component finds serial performance (Perfs) and
parallel performance (Perfp) of an either CPU or GPU mul-
ticore. Two performance bottlenecks limit Perfp and Perfs:
computation capability and bandwidth limits.

The maximum computation performance is the sum of the
Pc(qq,m,T) values for all cores being used. By definition, for
completely serial code, this is just the performance of a single
core, Pc(qa,m,T). For parallel code, Pc(qa,wm,T) is generally
multiplied by the number of active cores.

During serial and parallel phases, core resources are allo-
cated based on the topology as described above and in Table 1;
serial performance (Perfg) and parallel performance (Perf p)
are thus computed based on the particular topology and
organization’s execution paradigm. For CPU organizations,
topology specific Perf g and Perf , calculations are below:

Symmetric Perf g = min (Pc(gs,st, 1), Pp(gs,sr

Perf p = min (N x Pc(gs,st,1), Pe(gs,st

Perf p = min (Pc(qr,s7,1) + N x Po(gs,st, 1), Pe(gs, st

Dynamic & Fused Perf ¢ = min (Pc(qr,sr,1), Pe(qr,st

)

)

Asymmetric Perf ¢ = min (Pc(qr,s7,1), PB(qL,STg;
)

Perf p = min (N x Pc(gs,sr, 1), Pe(gs,sr))

For GPU organizations, the symmetric organization is similar
to a simple GPU. Heterogeneous organizations have one CPU-
like core for serial work and GPU-like cores for parallel work:

Symmetric Perfs = min (Pc(gs,mr, 1), Pe(qs,ur)

Perfp = min (N x Pc(qs,ur, Tmur), Pe(qs,u1)

Perfp = min (Pc(qr,s7,1) + N X Po(qs,mur, Tmr), P(gs,ur)

Dynamic & Fused Perfs = min (P¢(qr,s7, 1), PB (qr,s7)
Perfp = min (N x Pc(qs,mr, Tnr), P

)
)
Asymmetric Perfs = min (Pc(qr,s7, 1), Pe(qr, sT)g
)
)

B (gs,mr)

2.5 Multicore Speedup

Per Amdahl’s law [1], system speedup is —*

(1-1)+
represents the portion that can be parallelized, and Sg represents

the speedup achievable on the parallelized portion. Following
the example from Hill and Marty, we expand this approach to
use performance results from the previous section.

To find the overall speedup, the model finds Perfs and
Perfp and a baseline core and topology’s (e.g., a quadcore
Nehalem’s) serial and parallel performance as computed using
the multicore performance equations in Section 2.4 (Bases and
Basep, respectively). The serial portion of code is thus sped up
by Sseriat = Perf g/Bases and the parallel portion of the code
is sped up by Sparaier = Perf p/Basep. The overall speedup
is then:

Speedup =1/ ( + =< ) (5)

SSerial S Paralel

where f

To find the fraction of parallel code, f, for an application, we
find the application speedup when the number of cores varies.
We do an Amdahl’s law-based curve fit of the speedups across
the different numbers of cores, and optimistically assume
that the parallelized portions of the code could be further
parallelized across an infinite number of cores without penalty.

3 MoODEL ASSUMPTIONS

The model’s accuracy is limited by our optimistic assumptions,
thus making our speedup projections over-predictions.
Memory Latency: A key assumption in the model is that
memory accesses from a processor are in order and blocking.
We observe that for high performance cores where CPlee
approaches 0, performance is limited by memory latency due
to the in order and blocking assumption:

. _ . freq . T
cp}iglqu Po(gam T) = OP}S?—)O CPl.ye min | 1, 1+ t558
_ Tfreq

t X 1
This limitation is expected to have negligible impact when
CPleqe is greater than 1, but its impact increases as CPles.
decreases, implying more superscalar functionality in the core.
Microarchitecture: We assume memory accesses from different
cores do not cause stalls. Further, we assume that the inter-
connect has zero latency, shared memory protocols have no
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performance impact, threads never migrate, and thread swap
time is negligible. The assumptions cause the model to over-
predict performance, making projected speedups optimistic.
Application Behavior: The model optimistically assumes the
workload is homogeneous, parallel code sections are infinitely
parallelizable, and no thread synchronization, operating sys-
tem serialization, or swapping overheads occur.

4 VALIDATION

To validate the model, we compare speedup projections from
the model to measured and simulated speedups for CPU and
GPU organizations. To validate the model’s tighter bound, we
also find the speedup projections using Amdahl’s Law.

For CPU-style cores, we compare the predicted speedup to
measured speedups on 11 of the 13 PARSEC benchmarks using
either 2 or 4 threads on two four-core chips, a Xeon E5520
and a Core i7 860, as shown in Figure 4. We assume t5; = 3
cycles, tr2 = 20 cycles, and tmem = 200 cycles at 3.2Ghz. The
model captures the impact of the differing microarchitectures
and memory systems, is still optimistic, and provides a tighter
bound that the Amdahl’s Law projections. We use the average
CPI.. approach as described above, and thus report the
average speedup over the set of PARSEC benchmarks.

We validate GPU speedup projections comparing speedups
generated using the model to those simulated using GPG-
PUSIim (v. 3, PTX mode) [3]. Figure 3 shows results for 7
of GPGPUSim’s 12 CUDA benchmarks. The three specific
benchmarks shown demonstrate three cases: the highly parallel
StoreGPU, N-Queens Solver’s limited number of threads, and
Neural Network’s memory bandwidth saturation. The geomet-
ric mean (3d) shows that the model maintains a tighter upper

bound on speedup projections than Amdahl’s Law projections.
We use the number of threads and blocks generated by the
CUDA code to deal with occupancy issues beyond the warp
level, and estimate f from the speedup between 1 and 32 SMs
(assuming perfect memory). f therefore includes the effect of
blocking and other serializing behavior. For the GPU model,
we use tr1 = 1 and let tynem be the average memory latency
over the entire kernel as reported by GPGPUSim for a 32
SM GPU (varies from 492-608 cycles). These refined inputs
improved model accuracy over that in [4]. Our approach is
philosophically different than Hong and Kim’s approach of
using model inputs based on the CUDA program implementa-
tion [8]. More detailed qualitative and quantitative comparison
is an interesting avenue for future work. For both CPU and
GPU chips, if architectural or software changes affected the
rate of loads and stores, cache miss rates, cache access latencies,
CPleqe, core frequency, or the memory bandwidth, there would
be additional improvements over Amdahl’s Law projections.

5 MODEL UTILITY AND CONCLUDING THOUGHTS

Our first order multicore model projects a tighter upper
bound on performance than previous Amdahl’s Law based
approaches. This extended model incorporates abstracted sin-
gle threaded core designs, resource constraints, target applica-
tion parameters, desired architectural features, and additional
first order effects—exposing more bottlenecks than previous
versions of the model—while remaining simple and flexible
enough to be adapted for many applications.

The simple performance/resource constraint trade-offs that
are inputs to the model can be derived and used in a diverse
set of applications. Examples of the input trade-off functions
may be Pareto frontiers like those presented in Azizi et al. [2]
and Esmaeilzadeh et al. [4], known designs that an architect
is deciding between, or even more abstract trade-off func-
tions like Pollack’s Rule [10] used in Hill and Marty [7]. The
proposed speedup calculation technique can be applied to
even more detailed parallelism models, such as Eyerman and
Eeckhout’s critical sections model [5]. This complete model
can complement simulation based studies and facilitate rapid
design space exploration.
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